【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長(zhǎng),∠BOD的度數(shù),又由S陰影=S扇形OBD-S△BOD,即可求得答案.
試題解析:(1)連接OD,
∵BC是⊙O的切線,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵點(diǎn)D在⊙O上,
∴CD為⊙O的切線;
(2)過點(diǎn)O作OF⊥BD于點(diǎn)F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF= ,
∵OF⊥BD,
∴BD=2BF=2,∠BOD=2∠BOF=120°,
∴S陰影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將正比例函數(shù)y=kx(k>0)的圖象向上平移一個(gè)單位,那么平移后的圖象不經(jīng)過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△DCM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分線,點(diǎn)E在AC上,DE∥BC,則∠EDC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)1,2,3,4,……,2009排列成如圖所示的一個(gè)表
(1)用一正方形在表中隨意框住4個(gè)數(shù),把其中最小的數(shù)記為x,另三個(gè)數(shù)用含x的式子表示出來,從小到大依次是 , , 。
(2)當(dāng)被框住的4個(gè)數(shù)之和等于416時(shí),x的值是多少?
(3)被框住的4個(gè)數(shù)之和能否等于622?如果能,請(qǐng)求出此時(shí)x的值;如果不能,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com