【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為⊙O的切線;

(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)

【答案】(1)證明見解析;(2.

【解析】試題分析:(1)首先連接OD,由BCO的切線,可得ABC=90°,又由CD=CB,OB=OD,易證得ODC=ABC=90°,即可證得CDO的切線;

2)在RtOBF中,ABD=30°,OF=1,可求得BD的長,BOD的度數(shù),又由S陰影=S扇形OBD-SBOD,即可求得答案.

試題解析:(1)連接OD,

BCO的切線,

∴∠ABC=90°,

CD=CB,

∴∠CBD=CDB,

OB=OD

∴∠OBD=ODB,

∴∠ODC=ABC=90°

ODCD,

DO上,

CDO的切線;

2)過點OOFBD于點F

RtOBF中,

∵∠ABD=30°OF=1,

∴∠BOF=60°OB=2,BF= ,

OFBD,

BD=2BF=2,BOD=2BOF=120°

S陰影=S扇形OBDSBOD=×2×1=π

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若有理數(shù)a、b滿足:|a+2|+|b﹣2|=0,求(a+b)﹣ab的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將正比例函數(shù)y=kxk0)的圖象向上平移一個單位,那么平移后的圖象不經過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(﹣2)﹣5的結果等于( )
A.﹣7
B.﹣3
C.3
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結論;

(3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x+1≤3的解集是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分線,點E在AC上,DE∥BC,則∠EDC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把正整數(shù)1,2,3,4,……,2009排列成如圖所示的一個表

(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是 , 。

(2)當被框住的4個數(shù)之和等于416時,x的值是多少?

(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程﹣2x﹣1=1的解為x=_____

查看答案和解析>>

同步練習冊答案