【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結DC.
(1)請猜想:DC與BE的數(shù)量關系,并給予證明;
(2)求證:DC⊥BE.
【答案】(1)DC=BE;(2)詳見解析;
【解析】
(1)根據(jù)等腰直角三角形的性質,可以得出△ABE≌△ACD,得出對應邊相等即可;
(2)由△ABE≌△ACD可以得出∠B=∠ACD=45°,進而得出∠DCB=90°,就可以得出結論.
(1)解:DC=BE;
理由如下:∵△ABC與△AED均為等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∠ABC=∠ACB=45°,
∴∠BAC+∠CAE=∠EAD+∠CAE.
即∠BAE=∠CAD,
在△ABE與△ACD中,,
∴△ABE≌△ACD(SAS),
∴DC=BE;
(2)證明:∵△ABE≌△ACD,
∴∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).
(1)在第一象限內找一點P,以格點P、A、B為頂點的三角形與△ABC相似但不全等,請寫出符合條件格點P的坐標;
(2)請用直尺與圓規(guī)在第一象限內找到兩個點M、N,使∠AMB=∠ANB=∠ACB.請保留作圖痕跡,不要求寫畫法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳館普通票價30元張,暑假為了促銷,新推出一種優(yōu)惠卡:售價300元張,每次憑卡另收15元暑假普通票正常出售,優(yōu)惠卡僅限暑假使用,不限次數(shù)設游泳x次時,所需總費用為y元.
分別寫出選擇優(yōu)惠卡、普通票消費時,y與x之間的函數(shù)關系式;
在同一坐標系中,若兩種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,則下列結論:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是( )
A. ①②B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點D、E分別是∠B的兩邊BC、BA上的點,∠DEB=2∠B,F為BA上一點.
(1)如圖①,若DF平分∠BDE,求證:BD=DE+EF;
(2)如圖②,若DF為△DBE的外角平分線,BD、DE、EF三者有怎樣的數(shù)量關系?請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點E.
(1)求∠AED的度數(shù);
(2)當∠EDC滿足什么條件時,AE∥DC,證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將背面完全相同,正面上分別寫有數(shù)字1,2,3,4的四張卡片混合后,小明從中隨機地抽取一張,把卡片上的數(shù)字做為被減數(shù),將形狀、大小完全相同,分別標有數(shù)字1,2,3的三個小球混合后,小華從中隨機地抽取一個,把小球上的數(shù)字做為減數(shù),然后計算出這兩個數(shù)的差.
(1)請你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小明與小華做游戲,規(guī)則是:若這兩數(shù)的差為非負數(shù),則小明贏;否則,小華贏.你認為該游戲公平嗎?請說明理由.如果不公平,請你修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉可得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com