【題目】如圖,AB是⊙O的直徑,AB=6,點M在⊙O上,∠MBA=20°,N是的中點,P是直徑AB上的一動點,若AN=1,則△PMN周長的最小值為( 。
A. 3 B. 4 C. 5 D. 6
【答案】B
【解析】
作N關(guān)于AB的對稱點N′,由兩點之間線段最短可知MN′與AB的交點P′即為△PMN周長的最小時的點,根據(jù)N是弧MB的中點可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′為等邊三角形,由此可得出結(jié)論.
過N作NN′⊥AB,交AB于G,交O于N′,連接MN′交AB于P′,連接NN′,ON′,ON,MN,P′N,
∴NG=N′G,
∴N、N′關(guān)于AB對稱,
∴MN′與AB的交點P′即為△PMN周長的最小時的點,
∵N是弧MB的中點,
∴∠A=∠NOB=∠MON=20°,
∴∠MON′=60°,
∴△MON′為等邊三角形,
∴MN′=OM=AB=3,
∴△PMN周長的最小值為3+1=4.
故答案選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若 x 滿足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
設(shè) 9x=a,x4=b, 則 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
請仿照上面的方法求解下面問題:
(1)若 x 滿足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的邊長為 x , E , F 分別是 AD 、 DC 上的點,且 AE=1 , CF=3 ,長方形 EMFD 的面積是 48 ,分別以 MF 、 DF 作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗最有可能的是( 。
A. 在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”
B. 從一副撲克牌中任意抽取一張,這張牌是“紅色的”
C. 擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”
D. 擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班長小李對他所在班級(八年級班)全體同學(xué)的業(yè)余興趣愛好進行了一次調(diào)查,據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計圖表,根據(jù)調(diào)查他想寫一個調(diào)查報告交給學(xué)校,建議學(xué)校根據(jù)學(xué)生的個人興趣愛好,適當(dāng)?shù)陌才乓恍┨亻L培養(yǎng)或合理安排學(xué)生在校期間的課余活動,請你根據(jù)圖中提供的信息,幫助小李完成信息采集.
(1)該班共有學(xué)生_____人;
(2)在圖1中,請將條形統(tǒng)計圖補充完整;
(3)在圖2中,在扇形統(tǒng)計圖中,“音樂”部分所對應(yīng)的圓心角的度數(shù)_____度;
(4)求愛好“書畫”的人數(shù)占該班學(xué)生數(shù)的百分數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, AB=10,P是半徑OA上的一動點,PC⊥AB交⊙O于點C,在半徑OB上取點Q,使得OQ=CP,DQ⊥AB交⊙O于點D,點C,D位于AB兩側(cè),連結(jié)CD交AB于點E.點P從點A出發(fā)沿AO向終點O運動,在整個運動過程中,△CEP與△DEQ的面積和的變化情況是( )
A. 一直減小 B. 一直不變
C. 先變大后變小 D. 先變小后變大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳商場賣某種衣服每件的成本為元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月該衣服的銷售量(單位:件)與銷售單價(單位:元/件)之間存在如圖中線段所示的規(guī)律:
(1)求與之間的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)若某月該商場銷售這種衣服獲得利潤為元,求該月這種衣服的銷售單價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點A、B、C、D在⊙O上,AB=CD,下列結(jié)論:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正確的個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確結(jié)論的有( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A1B1C1是位似圖形.
(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點A的坐標(biāo)為(﹣6,﹣1),點C1的坐標(biāo)為(﹣3,2),則點B的坐標(biāo)為 ;
(2)以點A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1:2;
(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點P的坐標(biāo)為 ,計算四邊形ABCP的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com