【題目】某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補為(
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成

【答案】C
【解析】解:設(shè)實際每天鋪設(shè)管道x米,原計劃每天鋪設(shè)管道(x﹣10)米,方程 ,則表示實際用的時間﹣原計劃用的時間=15天, 那么就說明實際每天比原計劃多鋪設(shè)10米,結(jié)果提前15天完成任務(wù).
故選C.
工作時間=工作總量÷工作效率.那么3000÷x表示實際的工作時間,那么3000÷(x﹣10)就表示原計劃的工作時間,15就代表現(xiàn)在比原計劃少的時間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E在以AB為直徑的⊙O上,點C是 的中點,過點C作CD垂直于AE,交AE的延長線于點D,連接BE交AC于點F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線交于,兩點,點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點,.

1)求拋物線的解析式;

2)若的中點,求的長;

3)如圖,以為邊構(gòu)造矩形,設(shè)點的坐標(biāo)為,

①請求出,之間的關(guān)系式;②求出矩形的周長最大時,點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖形的操作過程:
在圖①中,將線段A1A2向右平移1個單位到B1B2 , 得到封閉圖形A1A2B2B1(即陰影部分);
在圖②中,將折線A1A2A3向右平移1個單位到B1B2B3 , 得到封閉圖形A1A2A3B3B2B1(即陰影部分).

(1)在圖③中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影;

(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:
S1= , S2= , S3=
(3)聯(lián)想與探索:
如圖④在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少并說明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)準(zhǔn)備購買筆和本子送給農(nóng)村希望小學(xué)的同學(xué),在市場上了解到某種本子的單價比某種筆的單價少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.
(1)求這種筆和本子的單價;
(2)該同學(xué)打算用自己的100元壓歲錢購買這種筆和本子,計劃100元剛好用完,并且筆和本子都買,請列出所有購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1kx+by2=﹣4x+a的圖象如圖所示,且A0,4),C(﹣20).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標(biāo);

②求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形,點、分別在軸、軸上, 點坐標(biāo)為, 連接,將矩形沿折疊,點的對應(yīng)點為點,則點的坐標(biāo)為_____(用含的式子表示).

查看答案和解析>>

同步練習(xí)冊答案