精英家教網 > 初中數學 > 題目詳情

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯(lián)結點.當車輛經過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標志牌為多少米?(結果精確到0.1.參考數據:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

【答案】解:過點E作EG⊥BC于點G,AH⊥EG于點H.

∵EF∥BC,
∴∠GEF=∠BGE=90°
∵∠AEF=143°,
∴∠AEH=53°.
∴∠EAH=37°.
在△EAH中,AE=1.2,∠AHE=90°,
∴sin∠EAH="sin" 37°

∴EH=1.2×0.6=0.72.
∵AB⊥BC,
∴四邊形ABGH為矩形.
∵GH=AB=1.2,
∴EG=EH+HG=1.2+0.72=1.92≈1.9.
答:適合該地下車庫的車輛限高標志牌為1.9米.
【解析】過E作垂線,作出限高,再過A點作垂線,構造出直角三角形△EAH,利用37度角的正弦,求出EH,進而求出限高.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與坐標軸分別交于,兩點,以線段為邊,在第一象限內作正方形,將正方形沿軸負方向,平移個單位長度,使點恰好落在直線上,則的值為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題需鋪設一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設實際每天鋪設管道x米,則可得方程 ,根據此情景,題中用“…”表示的缺失的條件應補為(
A.每天比原計劃多鋪設10米,結果延期15天才完成
B.每天比原計劃少鋪設10米,結果延期15天才完成
C.每天比原計劃多鋪設10米,結果提前15天才完成
D.每天比原計劃少鋪設10米,結果提前15天才完成

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D的切線分別交AB,AC的延長線于E,F,連接BD.

(1)求證:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.

(1)如圖①,求∠T和∠CDB的大小;
(2)如圖②,當BE=BC時,求∠CDO的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB。

1)若DBC邊上一點,E為直線AC上一點,且∠ADE=∠AED.求證:∠BAD=2CDE;

2)如圖,若DBC的反向延長線上,其它條件不變,(1)中的結論是否仍然成立?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,三個半圓依次相外切,它們的圓心都在x軸的正半軸上并與直線y=x相切,設半圓C1、半圓C2、半圓C3的半徑分別是r1、r2、r3 , 則當r1=1時,r3=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校開展的“書香校園”活動受到同學們的廣泛關注,為了解全校學生課外閱讀的情況,隨機調查了部分學生在一周內借閱圖書的次數,并制成如圖不完整的統(tǒng)計圖表.

學生借閱圖書的次數統(tǒng)計表:

借閱圖書的次數

次及以上

人數

請你根據統(tǒng)計圖表中的信息,解答下列問題:

1 ;

2)該調查統(tǒng)計數據的中位數是 ,眾數是 ;

3)若該校共有名學生,根據調查結果,估計該校學生在一周內借閱圖書次及以上的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,點P是Rt△ABC斜邊AB上一動點(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系,QE與QF的數量關系.
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

同步練習冊答案