精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點E在以AB為直徑的⊙O上,點C是 的中點,過點C作CD垂直于AE,交AE的延長線于點D,連接BE交AC于點F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長.

【答案】
(1)證明:連接OC,如圖1所示.

∵點C是 的中點,

= ,

∴OC⊥BE.

∵AB是⊙O的直徑,

∴AD⊥BE,

∴AD∥OC.

∵AD⊥CD,

∴OC⊥CD,

∴CD是⊙O的切線.


(2)解:過點O作OM⊥AC于點M,如圖2所示.

∵點C是 的中點,

= ,∠BAC=∠CAE,

=

∵cos∠CAD=

= ,

∴AB= BF=20.

在Rt△AOM中,∠AMO=90°,AO= AB=10,cos∠OAM=cos∠CAD= ,

∴AM=AOcos∠OAM=8,

∴AC=2AM=16.


【解析】(1)連接OC,由點C是 的中點利用垂徑定理可得出OC⊥BE,由AB是⊙O的直徑可得出AD⊥BE,進而可得出AD∥OC,再根據AD⊥CD可得出OC⊥CD,由此即可證出CD是⊙O的切線.(2)過點O作OM⊥AC于點M,由點C是 的中點利用圓周角定理可得出∠BAC=∠CAE,根據角平分線的定理結合cos∠CAD= 可求出AB的長度,在Rt△AOM中,通過解直角三角形可求出AM的長度,再根據垂徑定理即可得出AC的長度.
【考點精析】本題主要考查了解直角三角形的相關知識點,需要掌握解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ABDC,連接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分線相交于點F,若∠ADC=110°,則∠F的度數為( 。

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩個工程隊共同修建一條公路,從兩端同時開始,到工程結束時,甲工程 隊共施工了天,乙隊在中途接到緊急任務停止施工一段時間,回來后按照以前的施工 速度繼續(xù)施工至結束,設甲、乙兩工程隊各自施工的長度分別為(米),(米),甲 隊施工的時間為(天),,之間的函數圖象如圖所示.

1)這條公路的總長度是______米;

2)求乙隊在恢復施工后,之間的函數表 達式;

3)求在修建該條公路的過程中,甲、乙兩隊共同修建完米長時甲隊施工的天數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與坐標軸分別交于,兩點,以線段為邊,在第一象限內作正方形,將正方形沿軸負方向,平移個單位長度,使點恰好落在直線上,則的值為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,CDABD,CE平分∠ACBABE,EFABCBF

1CDEF平行嗎?并說明理由;

2)若∠A=72°,求∠FEC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形內有一點滿足,.連接.

1)求證:;

2)求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖△ABC的頂點坐標分別為A(-4,-3),B(0,-3),C(-2,1),如將B點向右平移2個單位后再向上平移4個單位到達B1點,若設△ABC的面積為S1 , △AB1C的面積為S2 , 則S1 , S2的大小關系為( 。

A.S1>S2
B.S1=S2
C.S1<S2
D.不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題需鋪設一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設實際每天鋪設管道x米,則可得方程 ,根據此情景,題中用“…”表示的缺失的條件應補為(
A.每天比原計劃多鋪設10米,結果延期15天才完成
B.每天比原計劃少鋪設10米,結果延期15天才完成
C.每天比原計劃多鋪設10米,結果提前15天才完成
D.每天比原計劃少鋪設10米,結果提前15天才完成

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,三個半圓依次相外切,它們的圓心都在x軸的正半軸上并與直線y=x相切,設半圓C1、半圓C2、半圓C3的半徑分別是r1、r2、r3 , 則當r1=1時,r3=

查看答案和解析>>

同步練習冊答案