【題目】如圖1,A為⊙O的弦EF上的一點,OB是和這條弦垂直的半徑,垂足為H,BA的延長線交⊙O于點C,過點C作⊙O的切線與EF的延長線相交于點D.
(1)求證:DA=DC;
(2)當(dāng)DF:EF=1:8,且DF=時,求ABAC的值;
(3)將圖1中的EF所在直線往上平行移動到⊙O外,如圖2的位置,使EF與OB,延長線垂直,垂足為H,A為EF上異于H的一點,且AH小于⊙O的半徑,AB的延長線交⊙O于C,過C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.
【答案】(1)見解析;(2)24;(3)見解析.
【解析】
(1)連接過切點的半徑OC,根據(jù)等角的余角相等進(jìn)行證明∠ACD=∠DAC,從而得到AD=CD;
(2)根據(jù)已知條件求得DF的長,再根據(jù)切割線定理求得CD的長.從而求得DF和EF的長,最后根據(jù)相交弦定理即可求得它們的乘積;
(3)作直徑,構(gòu)造了直角三角形,也構(gòu)造了弦切角所夾的弧所對的圓周角.根據(jù)等角的余角相等證明∠DAC=∠ACD,從而證明結(jié)論.
(1)連接OC,則OC⊥DC,
∴∠DCA=90°﹣∠ACO=90°﹣∠B,
∵∠DAC=∠BAE=90°﹣∠B,
∴∠DAC=∠DCA,
∴DA=DC;
(2)∵DF:EF=1:8,
∵DF=,
∴EF=8DF=8,
∵DC為⊙O的切線,
∴DC2=DFDE=×9=18,
∵DC=3,
∴AF=2,AE=6,
∴ABAC=AEAF=24;
(3)結(jié)論DA=DC仍然成立.
理由如下:延長BO交⊙O于K,連接CK,則∠KCB=90°,
∵DC為⊙O的切線,
∴∠DCA=∠CKB=90°﹣∠CBK,
∵∠CBK=∠HBA,
∴∠BAH=90°﹣∠HBA=90°﹣∠CBK,
∴∠DCA=∠BAH,
∴DA=DC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD(AB>AD)中,點E在邊AB上,以點E為圓心,AE長為半徑的⊙E分別交AB、AD于點N、N,與BC所在的直線相切于點G
(1)求證:EG∥MN;
(2)若AB=10,AD與BC之間的距離為6,求⊙E的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且∠B= 60°.過點C作圓的切線l與直徑AD的延長線交于點E,AF⊥l,垂足為F,CG⊥AD,垂足為G.
(1)求證:△ACF≌△ACG;
(2)若AF= 4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,是中線,延長到點,使,連結(jié),下面給出的四個結(jié)論:①,②平分,③,④,其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動點P從點A開始沿AB邊運(yùn)動,速度為2cm/s;動點Q從點B開始沿BC邊運(yùn)動,速度為4cm/s;如果P、Q兩動點同時運(yùn)動,那么何時△QBP與△ABC相似?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com