精英家教網 > 初中數學 > 題目詳情
如圖,已知∠ABC=30°,以O為圓心、2cm為半徑作⊙O,使圓心O在BC邊上移動,則當OB=______cm時,⊙O與AB相切.
設切點為M,連接OM,
∴OM⊥AB,
∵OM=2,∠B=30°,
∴OB=4.
故答案為4.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長為6,BC在x軸上,BC邊上的高線AO在y軸上,直線l繞點A轉動(與線段BC沒有交點).設與AB、l、x軸相切的⊙O1的半徑為r1,與AC、l、x軸相切的⊙O2半徑為r2
(1)求兩圓的半徑之和;
(2)探索直線l繞點A轉動到什么位置時兩圓的面積之和最?最小值是多少?
(3)若r1-r2=
3
,求經過點O1、O2的一次函數解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=
3
,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA與⊙O相切于點A,PC經過⊙O的圓心且與該圓相交于兩點B、C,若PA=4,PB=2,則sinP=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙M與x軸相切于原點,平行于y軸的直線交圓于P、Q兩點,P點在Q點的下方.若P點的坐標是(2,1),求圓心M的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,點F在CD上,點O是BF的中點,以BF為直徑的半圓與AD相切于點E.
(1)求證:點E是AD的中點;
(2)設BF=5,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,AB為⊙O的弦,過點O作AB的平行線,交⊙O于點C,直線OC上一點D滿足∠D=∠ACB.
(1)判斷直線BD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑等于4,tan∠ACB=
4
3
,求CD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點D在AB的延長線上,點C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為5,求點A到CD所在直線的距離.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知BC是⊙O的直徑,P是⊙O上一點,A是
BP
的中點,AD⊥BC于點D,BP與AD相交于點E.
(1)當BC=6且∠ABC=60°時,求
AB
的長;
(2)求證:AE=BE.
(3)過A點作AMBP,求證:AM是⊙O的切線.

查看答案和解析>>

同步練習冊答案