【題目】端午節(jié)前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時(shí)從盒中隨機(jī)取出火腿粽子的概率為;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時(shí)隨機(jī)取出火腿粽子的概率為

1)請你用所學(xué)知識(shí)計(jì)算:爸爸買的火腿粽子和豆沙粽子各有多少只;

2)若小明一次從盒內(nèi)剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計(jì)算)

【答案】1)爸爸買了火腿粽子5只、豆沙粽子10只;(2

【解析】

1)設(shè)爸爸買的火腿粽子和豆沙粽子分別為x只、y只,然后根據(jù)概率的意義列出方程組,求解即可.

2)根據(jù)題意,列出表格或畫樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.

解:(1)設(shè)爸爸買的火腿粽子和豆沙粽子分別為x只、y只,

根據(jù)題意得:,解得:

經(jīng)檢驗(yàn)符合題意.

爸爸買了火腿粽子5只、豆沙粽子10只.

2)由題可知,盒中剩余的火腿粽子和豆沙粽子分別為2只、3只,我們不妨把兩只火腿粽子記為a1、a23只豆沙粽子記為b1、b2、b3,則可列出表格如下:


a1

a2

b1

b2

b3

a1


a1a2

a1b1

a1b2

a1b3

a2

a2a1


a2b1

a2b2

a2b3

b1

b1a1

b1a2


b1b2

b1b3

b2

b2a1

b2a2

b2b1


b2b3

b3

b3a1

b3a2

b3b1

b3b2


一共有10種情況,恰有火腿粽子、豆沙粽子各1只的有6種情況,

∴P(火腿粽子、豆沙粽子各1只)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我南海某海域A處有一艘捕魚船在作業(yè)時(shí)突遇特大風(fēng)浪,船長馬上向我國漁政搜救中心發(fā)出求救信號(hào),此時(shí)一艘漁政船正巡航到捕魚船正西方向的B處,該漁政船收到漁政求救中心指令后前去救援,但兩船之間有大片暗礁,無法直線到達(dá),于是決定馬上調(diào)整方向,先向北偏東60°方向以每小時(shí)40海里的速度航行半小時(shí)到達(dá)C處,同時(shí)捕魚船低速航行到A點(diǎn)的正北2海里D處,漁政船航行到點(diǎn)C處時(shí)測得點(diǎn)D在南偏東53°方向上.

1)求CD兩點(diǎn)的距離;

2)漁政船決定再次調(diào)整航向前去救援,若兩船航速不變,并且在點(diǎn)E處相會(huì)合,求∠ECD的正弦值.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是射線yx≥0)上一點(diǎn),過點(diǎn)AABx軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線yCD邊于點(diǎn)E,則的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米

其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1E是正方形ABCDAB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

①線段DBDG的數(shù)量關(guān)系是   

②寫出線段BE,BFDB之間的數(shù)量關(guān)系.

2)當(dāng)四邊形ABCD為菱形,∠ADC60°,點(diǎn)E是菱形ABCDAB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

①如圖2,點(diǎn)E在線段AB上時(shí),請?zhí)骄烤段BE、BFBD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

②如圖3,點(diǎn)E在線段AB的延長線上時(shí),DE交射線BC于點(diǎn)M,若BE1AB2,直接寫出線段GM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于x的二次函數(shù)yax22axa0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣axa0).

1)試說明點(diǎn)C在一次函數(shù)的圖象上;

2)若兩個(gè)點(diǎn)(ky1)、(k+2y2)(k≠0±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過點(diǎn)Ey軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0a≤2時(shí),求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠C90°,DAB上一點(diǎn),以BD為直徑的⊙OAC相切于點(diǎn)E,交BC于點(diǎn)F,連接DF.

(1)求證:DF2CE

(2)BC3,sinB,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,等腰的底邊軸上,已知,拋物線(其中)經(jīng)過三點(diǎn),雙曲線(其中)經(jīng)過點(diǎn)軸,軸,垂足分別為

1)求出的值;當(dāng)為直角三角形時(shí),請求出的表達(dá)式;

2)當(dāng)為正三角形時(shí),直線平分,求時(shí)的取值范圍;

3)拋物線(其中)有一時(shí)刻恰好經(jīng)過點(diǎn),且此時(shí)拋物線與雙曲線(其中)有且只有一個(gè)公共點(diǎn)(其中),我們不妨把此時(shí)刻的記作,請直接寫出拋物線(其中)與雙曲線(其中)有一個(gè)公共點(diǎn)時(shí)的取值范圍.(是已知數(shù))

查看答案和解析>>

同步練習(xí)冊答案