【題目】如圖,點(diǎn)A是射線y═(x≥0)上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線y=交CD邊于點(diǎn)E,則的值為_____.
【答案】
【解析】
設(shè)點(diǎn)A的橫坐標(biāo)為m(m>0),則點(diǎn)B的坐標(biāo)為(m,0),把x=m代入y=x得到點(diǎn)A的坐標(biāo),結(jié)合正方形的性質(zhì),得到點(diǎn)C,點(diǎn)D和點(diǎn)E的橫坐標(biāo),把點(diǎn)A的坐標(biāo)代入反比例函數(shù)y=,得到關(guān)于m的k的值,把點(diǎn)E的橫坐標(biāo)代入反比例函數(shù)的解析式,得到點(diǎn)E的縱坐標(biāo),求出線段DE和線段EC的長度,即可得到答案.
解:設(shè)點(diǎn)A的橫坐標(biāo)為m(m>0),則點(diǎn)B的坐標(biāo)為(m,0),
把x=m代入y=x得:y=m,
則點(diǎn)A的坐標(biāo)為:(m,m),線段AB的長度為m,點(diǎn)D的縱坐標(biāo)為m,
∵點(diǎn)A在反比例函數(shù)y=上,
∴k=m2,
即反比例函數(shù)的解析式為:y=,
∵四邊形ABCD為正方形,
∴四邊形的邊長為m,
點(diǎn)C,點(diǎn)D和點(diǎn)E的橫坐標(biāo)為m+m=m,
把x=m代入y=得:
y=m,
即點(diǎn)E的縱坐標(biāo)為m,
則EC=m,DE=m﹣m=m,
∴
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的動點(diǎn)和圖形,給出如下定義:如果為圖形上一個動點(diǎn),,兩點(diǎn)間距離的最大值為,,兩點(diǎn)間距離的最小值為,我們把的值叫點(diǎn)和圖形間的“和距離”,記作(,圖形).
(1)如圖,正方形的中心為點(diǎn),.
①點(diǎn)到線段的“和距離”(,線段)=______;
②設(shè)該正方形與軸交于點(diǎn)和,點(diǎn)在線段上,(,正方形)=7,求點(diǎn)的坐標(biāo).
(2)如圖2,在(1)的條件下,過,兩點(diǎn)作射線,連接,點(diǎn)是射線上的一個動點(diǎn),如果(,線段),直接寫出點(diǎn)橫坐標(biāo)取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)是對角線,的交點(diǎn),,.點(diǎn)為線段上一點(diǎn),且滿足,過點(diǎn)作交于點(diǎn),交于點(diǎn).
(1)若,求;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位需采購一批商品,購買甲商品10件和乙商品15件需資金350元,而購買甲商品15件和乙商品10件需要資金375元.
求甲、乙商品每件各多少元?
本次計(jì)劃采購甲、乙商品共30件,計(jì)劃資金不超過460元,
最多可采購甲商品多少件?
若要求購買乙商品的數(shù)量不超過甲商品數(shù)量的,請給出所有購買方案,并求出該單位購買這批商品最少要用多少資金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn)C(0,-2),頂點(diǎn)D的坐標(biāo)為(1,),與軸交于A、B兩點(diǎn).
(1)求拋物線的解析式.
(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時,求點(diǎn)E的坐標(biāo)和的值.
(3)點(diǎn)F(0,)是軸上一動點(diǎn),當(dāng)為何值時,的值最小.并求出這個最小值.
(4)點(diǎn)C關(guān)于軸的對稱點(diǎn)為H,當(dāng)取最小值時,在拋物線的對稱軸上是否存在點(diǎn)Q,使△QHF是直角三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,AB,AC為弦,且∠ADC=∠DAB+∠ACD,AB交CD于E點(diǎn).
(1)求證:AB=AC.
(2)DF為切線,若DE=2,CE=10,求cos∠ADF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午”節(jié)前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時從盒中隨機(jī)取出火腿粽子的概率為;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機(jī)取出火腿粽子的概率為.
(1)請你用所學(xué)知識計(jì)算:爸爸買的火腿粽子和豆沙粽子各有多少只;
(2)若小明一次從盒內(nèi)剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+m和y=2x+n的圖象都經(jīng)過A(﹣4,0),且與y軸分別交于B、C兩點(diǎn),則△ABC的面積為( 。
A.48B.36C.24D.18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com