【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,ADG和△AED的面積分別為5038,則△EDF的面積為(

A. 6B. 12C. 4D. 8

【答案】A

【解析】

過點DDHACH,根據角平分線上的點到角的兩邊距離相等可得DF=DH,然后利用“HL”證明RtDEFRtDGH全等,根據全等三角形的面積相等可得SEDF=SGDH,設面積為S,然后根據SADF=SADH列出方程求解即可.

解:如圖,過點DDHACH,
ADABC的角平分線,DFAB,
DF=DH,
RtDEFRtDGH中,,
RtDEFRtDGHHL),
SEDF=SGDH,設面積為S,
同理RtADFRtADH
SADF=SADH,
38+S=50-S,
解得S=6
故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,平分,相交于點,則的長等于_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C處測得教學樓頂部D處的仰角為18°,教學樓底部B處的俯角為20°,教學樓的高BD=21m,求實驗樓與教學樓之間的距離AB(結果保留整數(shù)).(參考數(shù)據:tan18°≈0.32,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(3,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤3.其中正確的是(  )

A. ①② B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫度與我們的生活息息相關,如圖是一個溫度計實物示意圖,左邊的刻度是攝氏溫度(),右邊的刻度是華氏溫度().設攝氏溫度為x(℃)華氏溫度為y(℉),則yx的一次函數(shù),通過觀察我們發(fā)現(xiàn),溫度計上的攝氏溫度為0℃時,華氏溫度為32℉;攝氏溫度為﹣20℃時,華氏溫度為﹣4℉

請根據以上信息,解答下列問題

(1)仔細觀察圖中數(shù)據,試求出yx的函數(shù)關系式;

(2)當攝氏溫度為﹣5℃時,華氏溫度為多少?

(3)當華氏溫度為59℉時,攝氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線,其中

(1)求證:為任意非零實數(shù)時,拋物線軸總有兩個不同的交點;

(2)求拋物線軸的兩個交點的坐標(用含的代數(shù)式表示);

(3)將拋物線沿軸正方向平移一個單位長度得到拋物線,則無論取任何非零實數(shù)都經過同一個定點,直接寫出這個定點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的趙爽弦圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為,較短直角邊長為,若,大正方形的面積為13,則小正方形的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快車與慢車分別從甲、乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后原路按原速返回,此時,快車比慢車晚到達甲地,快、慢兩車距各自出發(fā)地的路程與所用的時的關系如圖所示.

1)甲、乙兩地之間的路程為____________

2)求的函數(shù)解析式,并寫出的取值范圍.

3)當快、慢兩車相距時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關于點B1成中心對稱,再作B2A3B3B2A2B1關于點B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____

查看答案和解析>>

同步練習冊答案