【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按擬定的價(jià)格進(jìn)行試銷(xiāo),通過(guò)對(duì)5天的試銷(xiāo)情況進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
單價(jià)x(元/件) | 30 | 34 | 38 | 40 | 42 |
銷(xiāo)量y(件) | 40 | 32 | 24 | 20 | 16 |
(1)通過(guò)對(duì)上面表格中的數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)銷(xiāo)量 (件)與單價(jià) (元/件)之間存在一次函數(shù)關(guān)系,求 關(guān)于 的函數(shù)關(guān)系式(不需要寫(xiě)出函數(shù)自變量的取值范圍);
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然存在(1)中的關(guān)系,且該產(chǎn)品的成本是20元/件.為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少?
【答案】
(1)解:設(shè)所求一次函數(shù)關(guān)系式為 ( ≠0)
將(30,40)、(40,20)代入 =,得
解得
∴y=-2x+100
(2)解:設(shè)利潤(rùn)為w元, 產(chǎn)品的單價(jià)為x元/件,根據(jù)題意,得
=
=
∴當(dāng)x=35元/件時(shí),工廠獲得最大利潤(rùn) 450元
【解析】(1)抓住關(guān)鍵的已知條件,銷(xiāo)量 y (件)與單價(jià) x (元/件)之間存在一次函數(shù)關(guān)系,利用待定系數(shù)法即可求出函數(shù)解析式。
(2)根據(jù)利潤(rùn)為w=(售價(jià)-進(jìn)價(jià))銷(xiāo)售量y,即可建立函數(shù)解析式,再求出其頂點(diǎn)坐標(biāo),即可求得結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD的一組鄰邊AB、AD的長(zhǎng)是關(guān)于x的方程x2﹣4x+m=0的兩個(gè)實(shí)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?
(2)在第(1)問(wèn)的前提下,若∠ABC=60°,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8)、動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),都以每秒1個(gè)單位的速度運(yùn)動(dòng)、其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng)、過(guò)點(diǎn)N作NP⊥BC,交AC于P,連結(jié)MP、已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了t秒、
(1)P點(diǎn)的坐標(biāo)為( , )(用含t的代數(shù)式表示);
(2)試求 △MPA面積的最大值,并求此時(shí)t的值;
(3)請(qǐng)你探索:當(dāng)t為何值時(shí),△MPA是一個(gè)等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)扇形滿足弧長(zhǎng)的比等于它們半徑的比,則稱(chēng)這兩個(gè)扇形相似。如圖,如果扇形AOB與扇形 是相似扇形,且半徑 ( 為不等于0的常數(shù))。那么下面四個(gè)結(jié)論:①∠AOB=∠ ;②△AOB∽△ ;③ ;④扇形AOB與扇形 的面積之比為 。成立的個(gè)數(shù)為:( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多項(xiàng)式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項(xiàng)式的值與字母x的取值無(wú)關(guān),求a、b的值.
(2)在(1)的條件下,先化簡(jiǎn)多項(xiàng)式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第2次從點(diǎn)A1向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第3次從點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3,…,按照這種移動(dòng)規(guī)律進(jìn)行下去,第n次移動(dòng)到達(dá)點(diǎn)An,如果點(diǎn)An與原點(diǎn)的距離不小于50,那么n的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)國(guó)慶節(jié)搞促銷(xiāo)活動(dòng),購(gòu)物不超過(guò)200元不給優(yōu)惠,超過(guò)200(不含200元)元而不足500元,所有商品按購(gòu)物價(jià)優(yōu)惠10%,超過(guò)500元的,其中500元按9折優(yōu)惠,超過(guò)的部分按8折優(yōu)惠,A,B兩個(gè)商品價(jià)格分別為180元,550元。
(1) 某人第一次購(gòu)買(mǎi)一件A商品,第二次購(gòu)買(mǎi)一件B商品,實(shí)際共付款多少元?
(2) 若此人一次購(gòu)物購(gòu)買(mǎi)A,B商品各一件,則實(shí)際付款多少錢(qián)?
(3) 國(guó)慶期間,某人在該商場(chǎng)兩次購(gòu)物分別付款180元和550元,如果他合起來(lái)一次性購(gòu)買(mǎi)同樣的商品,還可節(jié)約多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:
經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)4臺(tái)B型設(shè)備少4萬(wàn)元.
(1)求a、b的值;
(2)經(jīng)預(yù)算:市治污公司購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)47萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;
(3)在(2)問(wèn)的條件下,若該月要求處理西太湖的污水量不低于1860噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當(dāng)∠BOC=30°,∠DOE=_______________; 當(dāng)∠BOC=60°,∠DOE=_______________;
(2)通過(guò)上面的計(jì)算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com