【題目】閱讀下列 材料,并解答總題:

材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.

解:由分母x+1,可設(shè)

=

∵對(duì)于任意上述等式成立

,

解得,

這樣,分式就拆分成一個(gè)整式與一個(gè)分式的和的形式.

1)將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式為___________;

2)已知整數(shù)使分式的值為整數(shù),則滿足條件的整數(shù)=________

【答案】1;(24、16、2、-10

【解析】

1)仿照例題,列出方程組,求出a、b的值,把原式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式;
2)仿照例題,列出方程組,求出a、b的值,把原式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式,根據(jù)整除運(yùn)算解答;

解:(1)由分母x-1,可設(shè)x2+6x-3=x-1)(x+a+b
x2+6x-3=x-1)(x+a+b=x2+ax-x-a+b=x2+a-1x-a+b
∵對(duì)于任意x上述等式成立,

解得:

拆分成x+7+

故答案為:x+7+

2)由分母x-3,可設(shè)2x2+5x-20=x-3)(2x+a+b
2x2+5x-20=x-3)(2x+a+b=2x2+ax-6x-3a+b=2x2+a-6x-3a+b
∵對(duì)于任意x上述等式成立,

,解得

拆分成2x+11+

∵整數(shù)使分式的值為整數(shù),

為整數(shù),

則滿足條件的整數(shù)x=4、162、-10,
故答案為:4、162、-10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB上一點(diǎn),過點(diǎn)DDEBC,交直線MN于點(diǎn)E,垂足為F,連接CDBE

(1)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.

(2)(1)的條件下,當(dāng)∠A=__________°時(shí),四邊形BECD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以正方形ABCDB點(diǎn)為坐標(biāo)原點(diǎn).BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長(zhǎng)為6,順次連接OAOB、OCOD的中點(diǎn)A1、B1C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點(diǎn)得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點(diǎn)的坐標(biāo)為(xnyn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為正方形ABCD的對(duì)角線AC上一點(diǎn),以O為圓心,OC的長(zhǎng)為半徑的AB相切于點(diǎn)M.

求證:AD相切;

,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD 分別為兩圓的弦,AC、BD 為兩圓的公切線且相交于點(diǎn) P.若 PC=2,DB=6,∠APB=90°.

(1)PAB 的周長(zhǎng).

(2)PAB PCD 的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)分別為邊、上的點(diǎn),,點(diǎn)、分別為、邊上的點(diǎn),連接,若線段的夾角為,則的長(zhǎng)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:已知二次函數(shù)的圖象與軸交于兩點(diǎn).交軸于點(diǎn),點(diǎn),是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn),

(1)畫出圖象,并求二次函數(shù)的解析式.

(2)根據(jù)圖象直接寫出使一次函數(shù)值大于或等于二次函數(shù)值的的取值范圍.

(3)若直線與軸交點(diǎn)為,連接,,求三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于AC兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;

(3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、CF、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為:A(﹣2,1),B(﹣3,﹣1),C1,﹣1).若以A,BC,D為頂點(diǎn)的四邊形為平行四邊形,那么點(diǎn)D的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案