【題目】在平面直角坐標(biāo)系xOy中,直線l:y=ax+b與雙曲線交于點A(1,m)和B(﹣2,﹣1).點A關(guān)于x軸的對稱點為點C.
(1)①求k的值和點C的坐標(biāo);②求直線l的表達(dá)式;
(2)過點B作y軸的垂線與直線AC交于點D,經(jīng)過點C的直線與直線BD交于點E.若30°≤∠CED≤45°,直接寫出點E的橫坐標(biāo)t的取值范圍.
【答案】(1)①k=2;點C為(1,-2).
②直線l的表達(dá)式為.
(2) 或.
【解析】
(1)①將B點坐標(biāo)帶入,得到k值,再將A點帶入雙曲線,得到m值,由對稱性得到點C.
②由①可知A,B兩點坐標(biāo),將它們帶入y=ax+b,列方程組得到直線l的表達(dá)式.
(2)結(jié)合題意根據(jù)三角函數(shù)關(guān)系即可得到答案.
(1)①將B點坐標(biāo)帶入,
則,
得到k=2,則雙曲線為,
再將A點帶入雙曲線,
則
得到m=2值,則點A為(1,2),由對稱性得到點C為(1,-2).
②由①可知A,B兩點坐標(biāo),將它們帶入y=ax+b,
列方程組
兩式相加得b=0,則a=.故直線l的表達(dá)式為.
(2)由題意可知C到BD的距離為1,因為,
當(dāng)時,DE1=DE4=1,∴t=0或t=2;當(dāng)時,DE2=DE3=
可得t= 或t=,∴ 或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運球”被列入中招體育必考項目.為此某學(xué)校舉行“足球運球”達(dá)標(biāo)測試,將成績10分、9分、8分、7分,對應(yīng)定為A,B,C,D四個等級.某班根據(jù)測試成績繪制如下統(tǒng)計圖,請回答下列問題:
(1)該班級的總?cè)藬?shù)為 ,m= .
(2)補全條形統(tǒng)計圖.
(3)該班“足球運球”測試的平均成績是多少?
(4)現(xiàn)準(zhǔn)備從等級為A的4個人(2男2女)中隨機(jī)抽取兩個人去參加比賽,請用列表或畫樹狀圖的方法,求出恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減小;⑥a+b+c>0正確的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在AB、CD上,DG⊥EF于點H,交BC于點G,點P在線段BG上.若∠PEF=45°,AE=CG=5,PG=5,則EP=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),它將推動我國數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺階. 據(jù)預(yù)測,2020年到2030年中國5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.
根據(jù)上圖提供的信息,下列推斷不合理的是( )
A.2030年5G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬億元
B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長
C.2030年5G直接經(jīng)濟(jì)產(chǎn)出約為2020年5G直接經(jīng)濟(jì)產(chǎn)出的13倍
D.2022年到2023年與2023年到2024年5G間接經(jīng)濟(jì)產(chǎn)出的增長率相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)的∠MAN及其內(nèi)部的一點P,設(shè)點P到直線AM,AN的距離分別為d1,d2,稱和這兩個數(shù)中較大的一個為點P關(guān)于的“偏率” . 在平面直角坐標(biāo)系xOy中,
(1)點M,N分別為x軸正半軸,y軸正半軸上的兩個點.
①若點P的坐標(biāo)為(1,5),則點P關(guān)于的“偏率”為____________;
②若第一象限內(nèi)點Q(a,b)關(guān)于的“偏率”為1,則a,b滿足的關(guān)系為____________;
(2)已知點A(4,0),B(2,),連接OB,AB,點C是線段AB上一動點(點C不與點A,B重合). 若點C關(guān)于的“偏率”為2,求點C的坐標(biāo);
(3)點E,F分別為x軸正半軸,y軸正半軸上的兩個點,動點T的坐標(biāo)為(t,4),是以點T為圓心,半徑為1的圓. 若上的所有點都在第一象限,且關(guān)于的“偏率”都大于,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績繪制了如圖所示的折線統(tǒng)計圖.
根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應(yīng)推薦( 。
A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅統(tǒng)計圖補充完整;
(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準(zhǔn)備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com