【題目】如圖,在△ABC中,點D為BC邊的中點,以點D為頂點的∠EDF的兩邊分別與邊AB,AC交于點E,F(xiàn),且∠EDF與∠A互補.
(1)如圖1,若AB=AC,且∠A=90°,則線段DE與DF有何數(shù)量關(guān)系?請直接寫出結(jié)論;
(2)如圖2,若AB=AC,那么(1)中的結(jié)論是否還成立?若成立,請給出證明;若不成立,請說明理由;
(3)如圖3,若AB:AC=m:n,探索線段DE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】
(1)解:DF=DE,
理由:如圖1,連接AD,
∵Rt△ABC是等腰三角形,
∴∠C=∠B=45°,
∴D是斜邊BC的中點,
∴∠DAB=∠DAC= ∠BAC=45°,AD⊥BC,
∴AD=DC,
∵∠EDF=90°,
∴∠ADF+∠ADE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ADF+∠FDC=90°,
∴∠ADE=∠FDC,
在△ADE和△CDF中, ,
∴△AED≌△CFD(ASA);
∴DE=DF;
(2)解:DE=DF依然成立.
如圖2,過點D作DM⊥AB于M,作DN⊥AC于N,連接AD,
則∠EMD=∠FND=90°,
∵AB=AC,點D為BC中點,
∴AD平分∠BAC,
∴DM=DN,
∵在四邊形AMDN中.,∠DMA=∠DNA=90°,
∴∠MAN+∠MDN=180°,
又∵∠EDF與∠MAN互補,
∴∠MDN=∠EDF,
∴∠1=∠2,在△DEM與△DFN中, ,
∴△DEM≌△DFN(ASA),
∴DE=DF.
(3)解:結(jié)論DE:DF=n:m.
如圖3,過點D作DM⊥AB于M,作DN⊥AC于N,連接AD,
同(2)可證∠1=∠2,
又∵∠EMD=∠FND=90°,
∴△DEM∽△DFN,
∴ .
∵點D為BC邊的中點,
∴S△ABD=S△ADC,
∴ ,
∴ ,
又∵ ,
∴ .
【解析】(1)DF=DE,理由:如圖1,連接AD,根據(jù)等腰直角三角形的性質(zhì)及等腰三角形的三線合一得∠C=∠B=45°,∠DAB=∠DAC=45°,AD⊥BC,然后根據(jù)同角的余角相等得出∠ADE=∠FDC,進而利用ASA判斷出△AED≌△CFD,根據(jù)全等三角形對應(yīng)邊相等得出DE=DF;
(2)DE=DF依然成立.如圖2,過點D作DM⊥AB于M,作DN⊥AC于N,連接AD,根據(jù)等腰三角形的三線合一得出AD平分∠BAC,再根據(jù)角平分線的性質(zhì)定理得出DM=DN,根據(jù)四邊形的內(nèi)角和得出∠MAN+∠MDN=180°,又根據(jù)同角的補角相等得出∠MDN=∠EDF,進而得出∠1=∠2,然后根據(jù)ASA判斷出△DEM≌△DFN,根據(jù)全等三角形對應(yīng)邊相等得出結(jié)論;
(3)結(jié)論DE:DF=n:m.如圖3,過點D作DM⊥AB于M,作DN⊥AC于N,連接AD,由AA判斷出△DEM∽△DFN,根據(jù)相似三角形的對應(yīng)邊成比例得出=,根據(jù)等底同高的兩個三角形面積相等得出S△ABD=S△ADC,得出等積式,再根據(jù)等量代換得出結(jié)論。
【考點精析】掌握等腰直角三角形和角平分線的性質(zhì)定理是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對稱軸是直線x=1,有以下四個結(jié)論:
①abc>0;②b2-4ac>0;③b=-2a;④a+b+c>2.其中正確的是 (填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公司投資750萬元,成功研制出一種市場需求量較大的產(chǎn)品,并再投入資金1750萬元進行相關(guān)生產(chǎn)設(shè)備的改進.已知生產(chǎn)過程中,每件產(chǎn)品的成本為60元.在銷售過程中發(fā)現(xiàn),當(dāng)銷售單價定為120元時,年銷售量為24萬件;銷售單價每增加10元,年銷售量將減少1萬件.設(shè)銷售單價為x(元)(x>120),年銷售量為y(萬件),第一年年獲利(年獲利=年銷售額﹣生產(chǎn)成本)為z(萬元).
(1)求出y與x之間,z與x之間的函數(shù)關(guān)系式;
(2)該公司能否在第一年收回投資.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件:①∠A﹣∠B=∠C; ②∠A:∠B:∠C=2:3:5; ③∠A=∠B= ∠ C;④∠A=∠B=2∠C;⑤∠A=∠B= ∠C,其中能確定△ABC 為直角三角形的條件有 ( )
A.2 個B.3 個C.4 個D.5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 的一元二次方程m +2x-1=0有兩個不相等的實數(shù)根,則 的取值范圍是( )
A.m<-1
B.m>1
C.m<1且m≠0
D.m>-1且m≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0,
其中結(jié)論正確有( )個。
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年12月26日,青鹽鐵路正式通車,作為沿線火車站之一的濱海港站帶領(lǐng)濱海人民正式邁入了“高鐵時代”,從鹽城乘火車去北京的時間也大大縮短如圖,OA、BC分別是普通列車和動車從鹽城開往北京的路程與時間的函數(shù)圖象請根據(jù)圖中的信息,解答下列問題:
根據(jù)圖象信息,普通列車比動車早出發(fā)______h,動車的平均速度是______;
分別求出OA、BC的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
動車出發(fā)多少小時追上普通列車?此時他們距離出發(fā)地多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com