【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理.如圖,若a=4,b=6,則該直角三角形的周長(zhǎng)為( )
A.18B.20C.24D.26
【答案】C
【解析】
設(shè)小正方形的邊長(zhǎng)為x,根據(jù)已知條件得到AB=4+6=10,根據(jù)勾股定理列方程求得x=1,x=-6(不合題意舍去),根據(jù)三角形的周長(zhǎng)公式即可得到結(jié)論.
解:設(shè)小正方形的邊長(zhǎng)為x,
∵a=4,b=6,
∴AB=4+6=10,
在Rt△ABC中,AC2+BC2=AB2,
即(4+x)2+(6+x)2=102,
解得:x=2,x=﹣12(不合題意舍去),
∴該直角三角形的周長(zhǎng)為:4+2+6+2+10=24.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在⊙O中,直徑AB=4,點(diǎn)P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=2;若將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°到△A′BC′的位置,連接C′A,則C′A的長(zhǎng)為( )
A.B.C.D.2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖有一座拋物線(xiàn)形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達(dá)到警戒線(xiàn)CD,這是水面寬度為10m。
(1)在如圖的坐標(biāo)系中求拋物線(xiàn)的解析式。
(2)若洪水到來(lái)時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線(xiàn)開(kāi)始,再持續(xù)多少小時(shí)才能到拱橋頂?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減。虎a+b+c<0;④若方程ax2+bx+c﹣m=0沒(méi)有實(shí)數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,DC為⊙O的切線(xiàn),DE⊥AB,垂足為點(diǎn)E,交⊙O于點(diǎn)F,弦AC交DE于點(diǎn)P,連接CF.
(1)求證:∠DPC=∠PCD;
(2)若AP=2,填空:
①當(dāng)∠CAB= 時(shí),四邊形OBCF是菱形;
②當(dāng)AC=2AE時(shí),OB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+4與兩坐標(biāo)軸交于P,Q兩點(diǎn),在線(xiàn)段PQ上有一動(dòng)點(diǎn)A(點(diǎn)A不與P,Q重合),過(guò)點(diǎn)A分別作兩坐標(biāo)軸的垂線(xiàn),垂足為B,C,則下列說(shuō)法不正確的是( 。
A.點(diǎn)A的坐標(biāo)為(2,2)時(shí),四邊形OBAC為正方形
B.在整個(gè)運(yùn)動(dòng)過(guò)程中,四邊形OBAC的周長(zhǎng)保持不變
C.四邊形OBAC面積的最大值為4
D.當(dāng)四邊形OBAC的面積為3時(shí),點(diǎn)A的坐標(biāo)為(1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△中,,;若將△ 繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°到△ 的位置,連接,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一棵大樹(shù)在一次強(qiáng)臺(tái)風(fēng)中折斷倒下,未折斷樹(shù)桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹(shù)桿形成的夾角.樹(shù)桿旁有一座與地面垂直的鐵塔,測(cè)得米,塔高米.在某一時(shí)刻的太陽(yáng)照射下,未折斷樹(shù)桿落在地面的影子長(zhǎng)為米,且點(diǎn)、、、在同一條直線(xiàn)上,點(diǎn)、、也在同一條直線(xiàn)上.求這棵大樹(shù)沒(méi)有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù): , , ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com