【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標系中求拋物線的解析式。
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
【答案】5小時
【解析】試題分析:(1)首先設所求拋物線的解析式為:y=ax2(a≠0),再根據題意得到C(-5,-1),利用待定系數法即可得到拋物線解析式;
(2)根據拋物線解析式計算出A點坐標,進而得到F點坐標,然后計算出EF的長,再算出持續(xù)時間即可.
試題解析:(1)設所求拋物線的解析式為:y=ax2(a≠0),
∵由CD=10m,CD到拱橋頂E的距離僅為1m,
則C(-5,-1),
把C的坐標分別代入y=ax2得:a=-,
故拋物線的解析式為y=-x2;
(2)如圖:
∵AB寬20m,
∴設A(-10,b),
把A點坐標代入拋物線的解析式為y=-x2中,
解得:b=-4,
∴F(0,-4),
∴EF=3,
∵水位以每小時0.3m的速度上升,
∴3÷0.3=10(小時),
答:從正常水位開始,持續(xù)10小時到達警戒線.
科目:初中數學 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現,每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學生英語口語競賽,兩校參賽人數相等.比賽結束后,發(fā)現學生成績分別為7分、8分、9分、10分(滿分為10分).依據統計數據繪制了如圖所示的尚不完整的統計圖表.
甲校成績統計表
分數 | 7分 | 8分 | 9分 | 10分 |
人數 | 11 | 0 | 8 |
(1)在圖①中,“7分”所在扇形的圓心角等于______;
(2)請你將②的統計圖補充完整;
(3)經計算,乙校的平均分是8.3分,中位數是8分,請寫出甲校的平均分、中位數;并從平均分和中位數的角度分析哪個學校成績較好;
(4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應選哪所學校?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,二次函數y=a(x﹣h)2+的圖象經過原點O(0,0),A(2,0).
(1)寫出該函數圖象的對稱軸;
(2)若將線段OA繞點O逆時針旋轉60°到OA′,試判斷點A′是否為該函數圖象的頂點?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景點試開放期間,團隊收費方案如下:不超過30人時,人均收費120元;超過30人且不超過m(30<m≤100)人時,每增加1人,人均收費降低1元;超過m人時,人均收費都按照m人時的標準.設景點接待有x名游客的某團隊,收取總費用為y元.
(1)求y關于x的函數表達式;
(2)景點工作人員發(fā)現:當接待某團隊人數超過一定數量時,會出現隨著人數的增加收取的總費用反而減少這一現象.為了讓收取的總費用隨著團隊中人數的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 “蘑菇石”是我省著名自然保護區(qū)梵凈山的標志,小明從山腳B點先乘坐纜車到達觀景平臺DE觀景,然后再沿著坡腳為29°的斜坡由E點步行到達“蘑菇石”A點,“蘑菇石”A點到水平面BC的垂直距離為1790m.如圖,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的長度.(結果精確到0.1m)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:函數y=ax2-(3a+1)x+2a+1(a為常數).
(1)若該函數圖象與坐標軸只有兩個交點,求a的值;
(2)若該函數圖象是開口向上的拋物線,與x軸交于點A(x1,0),B(x2,0),與y軸交于點C,且x2-x1=2.
①求拋物線的表達式;
②作點A關于y軸的對稱點D,連接BC,DC,求sin ∠DCB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個矩形的長為a,寬為b(a>0,b>0),則矩形的面積為ab.代數式xy(x>0,y>0)可以看作是邊長為x和y的矩形的面積.我們可以由此解一元二次方程:x2+x﹣6=0(x>0).具體過程如下:
①方程變形為x(x+1)=6.
②畫四個邊長為x+1、x的矩形如圖放置;
③由面積關系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
參照上述方法求關于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:畫出示意圖,標注相關線段的長度,寫出解題步驟)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直角坐標平面上的,,,且,,.若拋物線經過、兩點.
求、的值;
將拋物線向上平移若干個單位得到的新拋物線恰好經過點,求新拋物線的解析式;
設中的新拋物的頂點點,為新拋物線上點至點之間的一點,以點為圓心畫圖,當與軸和直線都相切時,聯結、,求四邊形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com