【題目】如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為度.

【答案】15
【解析】∵將△BCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCF,
∴△BCE≌△DCF,
∴CE=CF,∠BEC=∠DFC=60°,
∵四邊形ABCD是正方形,
∴∠BCD=∠DCF=90°,
∴∠EFC=∠CEF,
∵∠EFC+∠CEF+90°=180°,
∴∠EFC=∠CEF=45°,
∴∠EFD=60°-45°=15°.
【考點(diǎn)精析】通過靈活運(yùn)用旋轉(zhuǎn)的性質(zhì),掌握①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說明。(適當(dāng)添加輔助線,其實(shí)并不難)

(1) (2) (3) (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長線于點(diǎn)F.

求證:
(1)AD=BD;
(2)DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)BC重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)EBC的平行線,交射線AC于點(diǎn)G,連接BE

1)如圖1所示,當(dāng)點(diǎn)D在線段BC上時(shí),求證:四邊形BCGE是平行四邊形;

2)如圖2所示,當(dāng)點(diǎn)DBC的延長線上時(shí),(1)中的結(jié)論是否成立?并請(qǐng)說明理由;

3)當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探索:你能求(x1)(x2019+x2018+x2017+……+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計(jì)算下列各式的值:

1)(x1)(x+1)=x21;

2)(x1)(x2+x+1)=x31

3)(x1)(x3+x2+x+1)=x41;

……

由此我們可以得到:(x1)(x2019+x2018+x2017+……+x+1)=   ;請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:

132019+32018+32017+……+3+1

2)(﹣250+(﹣249+(﹣248+……+(﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,,,求度數(shù).小明的思路是:過,如圖2,通過平行線性質(zhì)來求.

1)按小明的思路,易求得的度數(shù)為_________;請(qǐng)說明理由;

問題遷移:

2)如圖3,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,則、、之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

3)在(2)的條件下,如果點(diǎn)兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你直接寫出、、間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時(shí)間為x小時(shí),y1y2關(guān)于x的函數(shù)圖像如下圖

所示:

1)根據(jù)圖像,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;

2)若兩車之間的距離為S千米,請(qǐng)寫出S關(guān)于x的函數(shù)關(guān)系式;

3)甲、乙兩地間有A、B兩個(gè)加油站,相距200千米,若客車進(jìn)入A加油站時(shí),出租車恰好進(jìn)入B加油站,求A加油站離甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關(guān)系,并說明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案