【題目】如圖,在矩形ABCD中,AB=8,BC=6,點(diǎn)P、點(diǎn)E分別是邊AB、BC上的動點(diǎn),連結(jié)DP、PE.將△ADP與△BPE分別沿DP與PE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A′,B′處.
(1) 當(dāng)點(diǎn)P運(yùn)動到邊AB的中點(diǎn)處時(shí),點(diǎn)A′與點(diǎn)B′重合于點(diǎn)F處,過點(diǎn)C作CK⊥EF于K,求CK的長;
(2) 當(dāng)點(diǎn)P運(yùn)動到某一時(shí)刻,若P,A',B'三點(diǎn)恰好在同一直線上,且A'B'=4 ,試求此時(shí)AP的長.
【答案】(1);(2),PA的長為2或6.
【解析】
(1)由折疊的性質(zhì)可得E ,F,D三點(diǎn)在同一直線上,在Rt△DEC中,根據(jù)勾股定理可求出BE,CE,DE的長,再根據(jù)面積法即可求出CK的值;
(2)分兩種情況進(jìn)行討論:根據(jù)A′B′=4列出方程求解即可.
⑴如圖,
∵四邊形ABCD為矩形,將△ADP與△BPE分別沿DP與PE折疊,
∴∠PFD=∠PFE=90°,
∴∠PFD+∠PFE=180°,即:E ,F,D三點(diǎn)在同一直線上.
設(shè)BE=EF=x,則EC=6-x,
∵DC=AB=8, DF=AD=6,
在Rt△DEC中,∵DE=DF+FE=6+x, EC=6-x, DC=8,
∴(6+x)2=(6-x)2+82,
計(jì)算得出x=,即BE=EF=,
∴DE=, EC=,
∵S△DCE=DCCE=DECK,
∴CK=;
⑵①如圖2中,設(shè)AP=x,則PB=8-x,
由折疊可知:PA′=PA=x , PB′=PB=8-x,
∵A′B′=4,
∴8-x-x=4,
∴x=2, 即AP=2.
②如圖3中,
∵A′B′=4,
∴x-(8-x)=4, ∴x=6, 即AP=6.
綜上所述,PA的長為2或6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校夏令營活動中,科技小組同學(xué)準(zhǔn)備在3名老師的帶領(lǐng)下前往國家森林公園考察,公園內(nèi)有A、B兩個(gè)景區(qū)可供選擇,當(dāng)?shù)赜屑、乙兩家旅行社,可以在其中選一個(gè)兩家旅行社收取的服務(wù)費(fèi)用定價(jià)均為每人200元,實(shí)際收費(fèi)標(biāo)準(zhǔn)如下:甲旅行社表示服務(wù)費(fèi)用學(xué)生按8折優(yōu)惠,帶隊(duì)老師免費(fèi):乙旅行社表示服務(wù)費(fèi)用師生一律按照7折優(yōu)惠兩個(gè)景區(qū)門票定價(jià)均為每人100元,實(shí)際收費(fèi)標(biāo)準(zhǔn)如下:A景區(qū)對師生均收半價(jià),B景區(qū)規(guī)定總?cè)藬?shù)超過30人時(shí),按4折優(yōu)惠,否則按6折優(yōu)惠.
(1)經(jīng)核算,兩家旅行社的實(shí)際服務(wù)費(fèi)正好相等請你分析去哪個(gè)景區(qū)比較合算?
(2)若該學(xué)校在活動中,增加了8名學(xué)生,老師人數(shù)不變你認(rèn)為去哪個(gè)景區(qū)比較合算?
(3)當(dāng)有n名學(xué)生,3名老師參加時(shí),試給出合理的方案,使得總費(fèi)用最少.(總費(fèi)用=服務(wù)費(fèi)+門票費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c; ④4a﹣2b+c>0,其中正確有_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD 中,動點(diǎn) E 從點(diǎn) A 出發(fā),沿 AB→BC 方向運(yùn)動,當(dāng)點(diǎn) E 到達(dá)點(diǎn) C 時(shí) 停止運(yùn)動.過點(diǎn) E 作 FE⊥AE,交 CD 于 F 點(diǎn),設(shè)點(diǎn) E 運(yùn)動路程為 x,FC=y,圖②表示 y與 x 的函數(shù)關(guān)系的大致圖像,則矩形 ABCD 的面積是( )
A. B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用5個(gè)棱長為1的正方體組成如圖所示的幾何體.
(1)該幾何體的體積是多少立方單位,表面積是多少平方單位(包括底面積);
(2)請?jiān)诜礁窦堉杏脤?shí)線畫出它的三個(gè)視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A、B、C三點(diǎn),分別表示有理數(shù)-26,-10,10,動點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動,設(shè)點(diǎn)P移動時(shí)間為t秒.
(1)用含t的代數(shù)式表示P點(diǎn)對應(yīng)的數(shù):__________;
用含t的代數(shù)式表示點(diǎn)P和點(diǎn)C的距離:PC=_____________.
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動,Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回點(diǎn)A,
①點(diǎn)P、Q同時(shí)運(yùn)動運(yùn)動的過程中有__________處相遇,相遇時(shí)t=_______________秒.
②在點(diǎn)Q開始運(yùn)動后,請用t的代數(shù)式表示P、Q兩點(diǎn)間的距離.(友情提醒:注意考慮P、Q的位置)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行長跑比賽,運(yùn)動員從甲地出發(fā)跑到乙地后,又沿原路線跑回起點(diǎn)甲地.如圖是某運(yùn) 動員離開甲地的路程 s(km)與跑步時(shí)間 t(min)之間的函數(shù)關(guān)系(OA、OB 均為線段).已 知該運(yùn)動員從甲地跑到乙地時(shí)的平均速度是 0.2 km/min,根據(jù)圖像提供的信息,解答下列問 題:
(1)a= km;
(2)組委會在距離起點(diǎn)甲地 3 km 處設(shè)立了一個(gè)拍攝點(diǎn) P,該運(yùn)動員從第一次過 P 點(diǎn)到第二
次過 P 點(diǎn)所用的時(shí)間為 24 min.
①求 AB 所在直線的函數(shù)表達(dá)式;
②該運(yùn)動員跑完全程用時(shí)多少 min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“共享單車,綠色出行”,現(xiàn)如今騎共享單車出行不但成為一種時(shí)尚,也稱為共享經(jīng)濟(jì)的一種新形態(tài),某校九(1)班同學(xué)在街頭隨機(jī)調(diào)查了一些騎共享單車出行的市民,并將他們對各種品牌單車的選擇情況繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖(A:摩拜單車;B:ofo單車;C:HelloBike).請根據(jù)圖中提供的信息,解答下列問題:
(1)求出本次參與調(diào)查的市民人數(shù);
(2)將上面的條形圖補(bǔ)充完整;
(3)若某區(qū)有10000名市民騎共享單車出行,根據(jù)調(diào)查數(shù)據(jù)估計(jì)該區(qū)有多少名市民選擇騎摩托單車出行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com