【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).

求(1)拋物線的解析式;

(2)兩盞景觀燈P1、P2之間的水平距離.

【答案】1y=0≤x≤10);(2)兩景觀燈間的距離為5米.

【解析】試題分析:(1)拋物線的頂點坐標為(5,5),與y軸交點坐標是(0,1

設(shè)拋物線的解析式是y=Ax﹣52+5

把(0,1)代入y=Ax﹣52+5

A=﹣

∴y=﹣x﹣52+50≤x≤10);

2)由已知得兩景觀燈的縱坐標都是4

∴4=﹣x﹣52+5

x﹣52=1

∴x1=,x2=

兩景觀燈間的距離為=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖:

已知:線段ABBC,∠ABC90°,求作:矩形ABCD.

下面是小敏設(shè)計的尺規(guī)作圖過程:

做法:①以點C為圓心,AB長為半徑畫弧;

②以點A為圓心,BC長為半徑畫弧;

③兩弧在BC上方交于點D連接AD,CD,四邊形ABCD即為所求

根據(jù)小敏設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī)補全圖形;(保留作圖痕跡)

2)完成下面的證明

證明:∵AB   ,CB   ,

∴四邊形ABCD為平行四邊形(   

又∵∠ABC90°

∴平行四邊形ABCD為矩形(   )(填推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,點E在邊AD上,連接BE將△ABE沿BE翻折,得到△MBE,M點剛好在CD邊上,若AD長為2,AB長為,則AE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,ADCD,垂足為D,AD交⊙O于點E,連接CE.

(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)E是弧AC的中點,⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△DEF關(guān)于點O成中心對稱.

(1)作出它們的對稱中心O,并簡要說明作法;

(2)AB=6,AC=5,BC=4,求△DEF的周長;

(3)連接AF,CD,試判斷四邊形ACDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( 。

A. 10海里 B. 10 海里 C. 10海里 D. 20海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15AC=20,BC邊上的高AD=12,則BC的長為(

A.25B.7C.257D.144

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形中,,,上一個動點,,連接并延長交延長線于點.

1)如圖1,求證:

2)當為直角三角形時,求的長;

3)當的中點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)

(1)請直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍)

(2)求W與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?

(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?

查看答案和解析>>

同步練習(xí)冊答案