將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.要使這兩個正方形的面積之和等于17cm2,那么這兩個正方形的邊長分別是多少?
分析:設(shè)其中一個正方形的邊長為xcm,根據(jù)將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.要使這兩個正方形的面積之和等于17cm2,可列方程求解.
解答:解:設(shè)其中一個正方形的邊長為xcm,則另一個正方形的邊長為
20-4x
4
=(5-x)cm

依題意列方程得:x2+(5-x)2=17,
解方程得:x1=1,x2=4,
答:這兩個小正方形的邊長分別是1cm、4cm.
點評:本題考查理解題意的能力,設(shè)出一個正方形的邊長,表示出另一個,以面積相等做為等量關(guān)系列方程求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于17cm2,那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于12cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長各做成一個正方形,則這兩個正方形面積之和的最小值是
12.5
12.5
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長各做一個正方形.這兩個正方形面積之和有最值嗎?如有,求出最值;如沒有請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.兩個正方形的面積之和可能等于12cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案