【題目】如圖,在平面直角坐標系中,點在軸正半軸上,軸,點、的橫坐標都是3,且,點在上,若反比例函數(shù)的圖象經(jīng)過點、,且.
(1)求的值及點的坐標;
(2)將沿著折疊,設頂點的對稱點的坐標是,求代數(shù)式的值.
【答案】(1)k=3;D(1,3);(2)m+3n=9
【解析】
(1)先根據(jù),BC=2得出OA的長,再根據(jù)點B、C的橫坐標都是3可知BC∥AO,故可得出B點坐標,再根據(jù)點B在反比例函數(shù)的圖象上可求出k的值,由AC∥x軸可設點D(t,3)代入反比例函數(shù)的解析式即可得出t的值,進而得出D點坐標;
(2)過點A′作EF∥OA交AC于E,交x軸于F,連接OA′,根據(jù)AC∥x軸可知∠A′ED=∠A′FO=90°,由相似三角形的判定定理得出△DEA′∽△A′FO,設A′(m,n),可得出,再根據(jù)勾股定理可得出m2+n2=9,兩式聯(lián)立可得出的值.
解:(1)∵,BC=2,
∴OA=3,
∵點B、C的橫坐標都是3,
∴BC∥AO,
∴B(3,1),
∵點B在反比例函數(shù)的圖象上,
∴,解得k=3,
∵AC∥x軸,
∴設點D(t,3),
∴3t=3,解得t=1,
∴D(1,3);
(2)過點A′作EF∥OA交AC于E,交x軸于F,連接OA′(如圖所示),
∵AC∥x軸,
∴∠A′ED=∠A′FO=90°,
∵∠OA′D=90°,
∴∠A′DE=∠OA′F,
∴△DEA′∽△A′FO,
設A′(m,n),
∴,
又∵在Rt△A′FO中,m2+n2=9,
∴m+3n=9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.
(1)直接寫出點E的坐標(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,DE=4BE,連接CE,過點E作EF⊥CE交AB的延長線于點F,若AF=8,則正方形ABCD的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=5,BC=8,點M是△ABC的中線AD上一點,以M為圓心作⊙M.設半徑為r
(1)如圖1,當點M與點A重合時,分別過點B,C作⊙M的切線,切點為E,F.求證:BE=CF;
(2)如圖2,若點M與點D重合,且半圓M恰好落在△ABC的內(nèi)部,求r的取值范圍;
(3)當M為△ABC的內(nèi)心時,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果店王阿姨到水果批發(fā)市場打算購進一種水果銷售,經(jīng)過還價,實際價格每千克比原來少2元,發(fā)現(xiàn)原來買這種80千克的錢,現(xiàn)在可買88千克。
(1)現(xiàn)在實際這種每千克多少元?
(2)準備這種,若這種的量y(千克)與單價x(元/千克)滿足如圖所示的一次函數(shù)關系。
①求y與x之間的函數(shù)關系式;
②請你幫拿個主意,將這種的單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=收入-進貨金額)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月(30天)的試營銷,售價為9元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少4件,
(1)請直接寫出y與x之間的函數(shù)關系式;
(2)日銷售利潤不低于960元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?
(3)工作人員在統(tǒng)計的過程中發(fā)現(xiàn),有連續(xù)兩天的銷售利潤之和為1980元,請你算出是哪兩天.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com