【題目】水果店王阿姨到水果批發(fā)市場(chǎng)打算購(gòu)進(jìn)一種水果銷售,經(jīng)過(guò)還價(jià),實(shí)際價(jià)格每千克比原來(lái)少2元,發(fā)現(xiàn)原來(lái)買這種80千克的錢,現(xiàn)在可買88千克。
(1)現(xiàn)在實(shí)際這種每千克多少元?
(2)準(zhǔn)備這種,若這種的量y(千克)與單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系。
①求y與x之間的函數(shù)關(guān)系式;
②請(qǐng)你幫拿個(gè)主意,將這種的單價(jià)定為多少時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=收入-進(jìn)貨金額)
【答案】(1)20元
(2)①
②將這種水果的銷售單價(jià)定為30元時(shí),能獲得最大利潤(rùn),最大利潤(rùn)是1100元。
【解析】
分析:(1)設(shè)現(xiàn)在實(shí)際購(gòu)進(jìn)這種水果每千克x元,根據(jù)原來(lái)買這種水果80千克的錢,現(xiàn)在可買88千克列出關(guān)于x的一元一次方程,解方程即可。
(2)①設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,將(25,165),(35,55)代入,運(yùn)用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式。
②設(shè)這種水果的銷售單價(jià)為x元時(shí),所獲利潤(rùn)為w元,根據(jù)利潤(rùn)=銷售收入-進(jìn)貨金額得到w關(guān)于x的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可求解。
解:(1)設(shè)現(xiàn)在實(shí)際購(gòu)進(jìn)這種水果每千克x元,則原來(lái)購(gòu)進(jìn)這種水果每千克(x+2)元,由題意,得
80(x+2)=88x,解得x=20。
∴現(xiàn)在實(shí)際購(gòu)進(jìn)這種水果每千克20元。
(2)①設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
將(25,165),(35,55)代入,得
,解得。
∴y與x之間的函數(shù)關(guān)系式為。
②設(shè)這種水果的銷售單價(jià)為x元時(shí),所獲利潤(rùn)為w元,則
,
∴當(dāng)x=30時(shí),w有最大值1100。
∴將這種水果的銷售單價(jià)定為30元時(shí),能獲得最大利潤(rùn),最大利潤(rùn)是1100元。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.必然事件發(fā)生的概率是0
B.“任意畫一個(gè)等邊三角形,其內(nèi)角和是180°”是隨機(jī)事件
C.投一枚圖釘,“釘尖朝上”的概率不能用列舉法求得
D.如果明天降水的概率是50%,那么明天有半天都在下雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O的弦。過(guò)點(diǎn)B作BC//AD,交圓O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線于點(diǎn)P,且BCP=ACD。
(1) 判斷直線PC與圓O的位置關(guān)系,并說(shuō)明理由:
(2) 若AB=9,BC=6,求PC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列二次函數(shù)中,圖象以直線x=2為對(duì)稱軸、且經(jīng)過(guò)點(diǎn)(0,1)的是( )
A.y=(x﹣2)2+1
B.y=(x+2)2+1
C.y=(x﹣2)2﹣3
D.y=(x+2)2﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四個(gè)命題,則一定正確命題的序號(hào)是( )
①x=1是二次方程ax2+bx+c=0的一個(gè)實(shí)數(shù)根;
②二次函數(shù)y=ax2+bx+c的開(kāi)口向下;
③二次函數(shù)y=ax2+bx+c的對(duì)稱軸在y軸的左側(cè);
④不等式4a+2b+c>0一定成立.
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其補(bǔ)角的度數(shù);
(2)請(qǐng)求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補(bǔ),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com