【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4AB=7,

1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

2)求DE的長度;

3BEDF的位置關(guān)系如何?

【答案】1)旋轉(zhuǎn)角度為90°270°;(2DE= 3;(3BEDF是垂直關(guān)系.

【解析】試題先根據(jù)正方形的性質(zhì)得到:△AFD≌△AEB,從而得出等量關(guān)系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋轉(zhuǎn)中心和旋轉(zhuǎn)角度.這些等量關(guān)系即可求出DE=AD﹣AE=7﹣4=3BE⊥DF

解:(1)根據(jù)正方形的性質(zhì)可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA

可得旋轉(zhuǎn)中心為點A;旋轉(zhuǎn)角度為90°270°

2DE=AD﹣AE=7﹣4=3;

3∵∠EAF=90°,∠EBA=∠FDA

延長BEDF相交于點G,則∠GDE+∠DEG=90°,

∴BE⊥DF,

BEDF是垂直關(guān)系.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某自行車制造廠開發(fā)了一款新式自行車,計劃6月份生產(chǎn)安裝600,由于抽調(diào)不出足夠的熟練工來完成新式自行車的安裝,工廠決定招聘一些新工人他們經(jīng)過培訓后也能獨立進行安裝.調(diào)研部門發(fā)現(xiàn):1名熱練工和2名新工人每日可安裝8輛自行車;2名熟練工和3名新工人每日可安裝14輛自行車

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車?

(2)如果工廠招聘n名新工人(0<n<10).使得招聘的新工人和抽調(diào)熟練工剛好能完成6月份(30的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

(3)該自行車關(guān)于輪胎的使用有以下說明本輪胎如安裝在前輪,安全行使路程為11千公里;如安裝在后輪安全行使路程為9千公里.請問一對輪胎能行使的最長路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為a厘米的正方形的四個角各剪去一個邊長為b厘米的小正方形.

(1)用代數(shù)式表示剩余部分的面積;

(2)當a=8.68,b=0.66時,求剩余部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:

(1)請直接寫出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個數(shù)所對應(yīng)的點分別為A、B、C,點A、B、C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關(guān)系式表示);

請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ABC=45°,tan∠ACB= .如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC= ,AC與y軸交于點E.

(1)求AC所在直線的函數(shù)解析式;
(2)過點O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點F(10,0),在△ABC的邊上取兩點P,Q,是否存在以O(shè),P,Q為頂點的三角形與△OFP全等,且這兩個三角形在OP的異側(cè)?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知菱形ABCD的邊長為2 ,點A在x軸負半軸上,點B在坐標原點.點D的坐標為(﹣ ,3),拋物線y=ax2+b(a≠0)經(jīng)過AB、CD兩邊的中點.

(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個單位長度的速度沿x軸正方向勻速平移(如圖2),過點B作BE⊥CD于點E,交拋物線于點F,連接DF、AF.設(shè)菱形ABCD平移的時間為t秒(0<t<
①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請說明理由;
②連接FC,以點F為旋轉(zhuǎn)中心,將△FEC按順時針方向旋轉(zhuǎn)180°,得△FE′C′,當△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時,求t的取值范圍.(寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F是ABCD對角線AC上的兩點,且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請寫出圖中除△ABE≌△CDF外其余兩對全等三角形(不再添加輔助線).

查看答案和解析>>

同步練習冊答案