【題目】操作:在中,,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊的中點(diǎn)處,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交射線、、兩點(diǎn).圖,,是旋轉(zhuǎn)三角板得到的圖形中的種情況.

研究:

三角板繞點(diǎn)旋轉(zhuǎn),觀察線段之間有什么數(shù)量關(guān)系,并結(jié)合圖加以證明;

三角板繞點(diǎn)旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(即寫出為等腰三角形時(shí)的長(zhǎng));若不能,請(qǐng)說(shuō)明理由;

若將三角板的直角頂點(diǎn)放在斜邊上的處,且,和前面一樣操作,試問(wèn)線段之間有什么數(shù)量關(guān)系?并結(jié)合圖加以證明.

【答案】證明見(jiàn)解析;(2)共有四種情況:當(dāng)點(diǎn)與點(diǎn)重合,即時(shí),;②,此時(shí);

當(dāng)時(shí),此時(shí);④當(dāng)的延長(zhǎng)線上,且時(shí),此時(shí);

【解析】

試題(1)連接PC,通過(guò)證明△PCD≌△PBE,得出PD=PE;

2)分為點(diǎn)C與點(diǎn)E重合、CE=、CE=1、ECB的延長(zhǎng)線上四種情況進(jìn)行說(shuō)明;

3)作MH⊥CB,MF⊥AC,構(gòu)造相似三角形△MDF△MHE,然后利用對(duì)應(yīng)邊成比例,就可以求出MDME之間的數(shù)量關(guān)系.

1)連接PC,

因?yàn)?/span>△ABC是等腰直角三角形,PAB的中點(diǎn),

∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°

∴∠ACP=∠B=45°

∵∠DPC+∠CPE=∠BPE+∠CPE,

∴∠DPC=∠BPE

∴△PCD≌△PBE

∴PD=PE;

2△PBE是等腰三角形,

當(dāng)PE=PB時(shí),此時(shí)點(diǎn)C與點(diǎn)E重合,CE=0;

當(dāng)BP=BE時(shí),E在線段BC上,CE=ECB的延長(zhǎng)線上,CE=;

當(dāng)EP=EB時(shí),CE=1;

3)過(guò)點(diǎn)MMF⊥AC,MH⊥BC

∵∠C=90°,

四邊形CFMH是矩形即∠FMH=90°,MF=CH

∵∠DMF+∠DMH=∠DMH+∠EMH=90°,

∴∠DMF=∠EMH,

∵∠MFD=∠MHE=90°,

∴△MFD∽△MHE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi)要折出一個(gè)菱形小華同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH見(jiàn)方案一),小麗同學(xué)沿矩形的對(duì)角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見(jiàn)方案二).

1你能說(shuō)出小華、小麗所折出的菱形的理由嗎?

2請(qǐng)你通過(guò)計(jì)算比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a的兩點(diǎn)之間的距離是5,那么__________;

2)若數(shù)軸上表示數(shù)a的點(diǎn)位于6之間,求的值;

3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(m,n+1),B(m+2,n).

1)當(dāng)m=1,n=2時(shí).如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .

2)如圖2,若點(diǎn)A在第二象限、點(diǎn)B在第一象限,連接AB、AOBO,ABy軸于H,△ABO的面積為2.求點(diǎn)H的坐標(biāo).

3)若點(diǎn)AB在第一象限,在y 軸正半軸上存在點(diǎn)C,使得∠CAB=900,CA=AB,m的值,及OC的長(zhǎng)(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰中,,點(diǎn)為邊上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),,垂足為,交于點(diǎn).

1)請(qǐng)猜想之間的數(shù)量關(guān)系,并證明;

2)若點(diǎn)為邊延長(zhǎng)線上一點(diǎn),,垂足為,交延長(zhǎng)線于點(diǎn),請(qǐng)?jiān)趫D2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請(qǐng)證明;若不成立,請(qǐng)寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個(gè)產(chǎn)品銷售點(diǎn)在經(jīng)銷時(shí)發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價(jià)1元,日銷售量將減少2箱.

(1)現(xiàn)該銷售點(diǎn)每天盈利600元,同時(shí)又要顧客得到實(shí)惠,那么每箱產(chǎn)品應(yīng)漲價(jià)多少元?

(2)若該銷售點(diǎn)單純從經(jīng)濟(jì)角度考慮,每箱產(chǎn)品應(yīng)漲價(jià)多少元才能獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)MBC邊上,且∠MDF=∠ADF。

1)求證:△ADE≌△BFE

2)如果FM=CM,求證:EM垂直平分DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是矩形的對(duì)角線的交點(diǎn),、分別是、、、上的點(diǎn),且

求證:四邊形是矩形;

、、、分別是、、的中點(diǎn),且,,求矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時(shí)間(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯(cuò)誤的是

A.騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘

B.騎車的同學(xué)比步行的同學(xué)早6分鐘到達(dá)目的地

C.騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘

D.步行同學(xué)的速度是6千米/小時(shí),騎車同學(xué)的速度是千米/小時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案