【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(m,n+1),B(m+2,n).
(1)當(dāng)m=1,n=2時(shí).如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .
(2)如圖2,若點(diǎn)A在第二象限、點(diǎn)B在第一象限,連接AB、AO、BO,AB交y軸于H,△ABO的面積為2.求點(diǎn)H的坐標(biāo).
(3)若點(diǎn)A、B在第一象限,在y 軸正半軸上存在點(diǎn)C,使得∠CAB=900,且CA=AB,求m的值,及OC的長(用含n的式子表示).
【答案】(1);(2)點(diǎn)H的坐標(biāo)(0,2);(3)OC=n-1(n>1),m=1
【解析】
(1)過點(diǎn)A作AC⊥y軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,AC、BD交于點(diǎn)E,求出各點(diǎn)坐標(biāo),然后利用△ABO所在矩形的面積減去周圍三角形的面積計(jì)算即可;
(2)根據(jù)計(jì)算即可;
(3)過點(diǎn)A作ADy軸,垂足為D,延長DA,過點(diǎn)B作BEDA,交DA的延長線于點(diǎn)E,首先證明,得到AD=BE=m,CD=AE=2,然后列式計(jì)算即可.
(1)如圖,過點(diǎn)A作AC⊥y軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,AC、BD交于點(diǎn)E,
∵m=1,n=2,
∴A(1,3),B(3,2),
∴C(0,3),E(3,3),D(3,0),
∴S△ABO;
(2)==OH=2,
點(diǎn)H的坐標(biāo)(0,2);
(3)過點(diǎn)A作ADy軸,垂足為D,延長DA,過點(diǎn)B作BEDA,交DA的延長線于點(diǎn)E,
,
,
∠CAB=90°,
,
,
CA=AB,
,
AD=BE=m,CD=AE=2,
OC+CD=n+1,
OC=n-1(n>1),
OC+CD=n+m=n+1,
m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準(zhǔn)備在此建一個(gè)綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個(gè)矩形(其中三個(gè)矩形的一邊長均為a米)區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場地.設(shè)通道的寬度為x米.
(1)a= (用含x的代數(shù)式表示);
(2)若塑膠運(yùn)動(dòng)場地總占地面積為 2430平方米,則通道的寬度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABOC的AB,AC分別與⊙O相切于點(diǎn)D、E,若點(diǎn)D是AB的中點(diǎn),則∠DOE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)4(x-1)2=100
(2)x2-2x-15=0
(3)3x2-13x-10=0
(4)3(x-3)2+x(x-3)=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:①射線是軸對(duì)稱圖形;②角的平分線是角的對(duì)稱軸;③軸對(duì)稱圖形的對(duì)稱點(diǎn)一定在對(duì)稱軸的兩側(cè);④平行四邊形是軸對(duì)稱圖形;⑤平面上兩個(gè)全等的圖形一定關(guān)于某條直線對(duì)稱,其中正確的說法有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明定理:三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等,已知:
如圖,在△ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點(diǎn)P,分別交AB邊、BC邊于點(diǎn)E、F.
求證:AB、BC、AC的垂直平分線相交于點(diǎn)P
證明:∵點(diǎn)P是AB邊垂直平線上的一點(diǎn),
∴ = ( ).
同理可得,PB= .
∴ = (等量代換).
∴ (到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的 )
∴AB、BC、AC的垂直平分線 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:在中,,,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊的中點(diǎn)處,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交射線、于、兩點(diǎn).圖,,是旋轉(zhuǎn)三角板得到的圖形中的種情況.
研究:
三角板繞點(diǎn)旋轉(zhuǎn),觀察線段和之間有什么數(shù)量關(guān)系,并結(jié)合圖加以證明;
三角板繞點(diǎn)旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(即寫出為等腰三角形時(shí)的長);若不能,請(qǐng)說明理由;
若將三角板的直角頂點(diǎn)放在斜邊上的處,且,和前面一樣操作,試問線段和之間有什么數(shù)量關(guān)系?并結(jié)合圖加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小,此時(shí)∠MAN的度數(shù)為_________°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com