【題目】如圖,平面直角坐標(biāo)系中的每個小正方形邊長為1,△ABC的頂點(diǎn)在網(wǎng)格的格點(diǎn)上.

1)畫線段ADBC,且使ADBC,連接BD;此時D點(diǎn)的坐標(biāo)是   

2)直接寫出線段AC的長為   ,AD的長為   BD的長為   

3)直接寫出△ABD   三角形,四邊形ADBC面積是   

【答案】1)如圖所示:D點(diǎn)的坐標(biāo)是(0,﹣4);(2)線段AC的長為AD的長為2,BD的長為;(3)△ABD直角三角形,四邊形ADBC面積是20

【解析】

1)根據(jù)題意畫出圖形,進(jìn)一步得到D點(diǎn)的坐標(biāo);

2)根據(jù)勾股定理可求線段AC的長,AD的長,BD的長;

3)根據(jù)勾股定理的逆定理可得ABD為直角三角形,再根據(jù)矩形的面積公式即可求解.

1)如圖所示:D點(diǎn)的坐標(biāo)是(0,﹣4);

2)線段AC的長為 AD的長為BD的長為

3)∵

∴△ABD 直角三角形,四邊形ADBC面積是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了宣傳2018年世界杯,實(shí)現(xiàn)“足球進(jìn)校園”的目標(biāo),任城區(qū)某中學(xué)計(jì)劃為學(xué)校足球隊(duì)購買一批足球,已知購買2A品牌的足球和3B品牌的足球共需380元;購買4A品牌的足球和2B品牌的足球共需360元.

1)求A,B兩種品牌的足球的單價.

2)學(xué)校準(zhǔn)備購進(jìn)這兩種品牌的足球共50個,并且B品牌足球的數(shù)量不少于A品牌足球數(shù)量的4倍,請?jiān)O(shè)計(jì)出最省錢的購買方案,求該方案所需費(fèi)用,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店為了鼓勵營業(yè)員多銷售服裝,在原來的支付月薪方式(y1):每月底薪600元,每售出一件服裝另支付4元的提成,推出第二種支付月薪的方式(y2),如圖所示,設(shè)x()是一個月內(nèi)營業(yè)員銷售服裝的數(shù)量,y()是營業(yè)員收入的月薪,請結(jié)合圖形解答下列問題:

(1)y1y2的函數(shù)關(guān)系式;

(2)該服裝店新推出的第二種付薪方式是怎樣向營業(yè)員支付薪水的?

(3)如果你是營業(yè)員,你會如何選擇支付薪水的方式?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),

,于是

遷移應(yīng)用

(1)如圖2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一直線上,連接BD.

(ⅰ)求證:△ADB≌△AEC;

(ⅱ)請直接寫出線段AD,BD,CD之間的等量關(guān)系式.

拓展延伸

(2)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.

(。┳C明:△CEF是等邊三角形;

(ⅱ)若AE=5,CE=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市自來水公司對每戶用水量進(jìn)行了分段計(jì)費(fèi),每戶每月用水量在規(guī)定噸數(shù)以下的收費(fèi)標(biāo)準(zhǔn)相同,規(guī)定噸數(shù)以上的超過部分收費(fèi)相同.如表是小明家14月用水量和交費(fèi)情況:

月份

1

2

3

4

用水量(噸)

6

8

12

15

費(fèi)用(元)

12

16

28

37

(Ⅰ)若小明家5月份用水25噸,則應(yīng)繳多少元水費(fèi)?

(Ⅱ)若該戶居民某月份用水為噸,則應(yīng)收水費(fèi)多少元?(用含的代數(shù)式表示,并化簡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線軸分別交于點(diǎn)、點(diǎn),直線于點(diǎn)是直線上一動點(diǎn),且在點(diǎn)的上方,設(shè)點(diǎn).

1)當(dāng)四邊形的面積為38時,求點(diǎn)的坐標(biāo),此時在軸上有一點(diǎn),在軸上找一點(diǎn),使得最大,求出的最大值以及此時點(diǎn)坐標(biāo);

2)在第(1)問條件下,直線左右平移,平移的距離為. 平移后直線上點(diǎn),點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn),當(dāng)為等腰三角形時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的垂直平分線于點(diǎn),交于點(diǎn),連接,,,,添加一個條件,無法判定四邊形為正方形的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式2x3yxy+16的次數(shù)為a,常數(shù)項(xiàng)為b,ab分別對應(yīng)著數(shù)軸上的A、B兩點(diǎn).

1a   ,b   ;并在數(shù)軸上畫出A、B兩點(diǎn);

2)若點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度單位的速度向x軸正半軸運(yùn)動,求運(yùn)動時間為多少時,點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍;

3)數(shù)軸上還有一點(diǎn)C的坐標(biāo)為30,若點(diǎn)PQ同時從點(diǎn)A和點(diǎn)B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點(diǎn)運(yùn)動,P到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動的終點(diǎn)A,求點(diǎn)P和點(diǎn)Q運(yùn)動多少秒時,P,Q兩點(diǎn)之間的距離為4,并求出此時點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BFCE,垂足為F,則tanFBC的值為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案