【題目】電子政務(wù)、數(shù)字經(jīng)濟(jì)、智慧社會……一場數(shù)字革命正在神州大地激蕩,在第二屆數(shù)字中國建設(shè)峰會召開之際,某校舉行了第二屆“掌握新技術(shù),走進(jìn)數(shù)時代”信息技術(shù)應(yīng)用大賽,將該校八年級參加競賽的學(xué)生成績統(tǒng)計后,繪制成如下統(tǒng)計圖表(不完整)

“掌握新技術(shù),走進(jìn)數(shù)時代”信息技術(shù)應(yīng)用大賽成績頻數(shù)分布統(tǒng)計表:

組別

成績x(分)

人數(shù)

A

60≤x70

10

B

70≤x80

m

C

80≤x90

16

D

90≤x≤100

4

請觀察上面的圖表,解答下列問題:

1)統(tǒng)計表中m   ;統(tǒng)計圖中n   B組的圓心角是   度.

2D組的4名學(xué)生中,有2名男生和2名女生.從D組隨機(jī)抽取2名學(xué)生參加5G體驗活動,請你畫出樹狀圖或用列表法求:

①恰好1名男生和1名女生被抽取參加5G體驗活動的概率;

②至少1名女生被抽取參加5G體驗活動的概率.

【答案】(1)20、32144;(2)①;②

【解析】

1)先根據(jù)A組人數(shù)及其所占百分比求出總?cè)藬?shù),然后由各組人數(shù)之和等于總?cè)藬?shù)即可求出B組人數(shù)m的值,用C組人數(shù)除以總?cè)藬?shù)即可求出n的值,用360°乘以B組人數(shù)所占比百分比即可求出圓心角的度數(shù);

2)①列表得出所有等可能結(jié)果,從中找到恰好1名男生和1名女生被抽取參加5G體驗活動的情況數(shù),再利用所求情況數(shù)與總數(shù)之比求概率即可;

②從列表中找出至少1名女生被抽取參加5G體驗活動的情況數(shù),再利用所求情況數(shù)與總數(shù)之比求概率即可.

解:(1)被調(diào)查的總?cè)藬?shù)為10÷20%50,

m50﹣(10+16+4)=20

n%×100%32%,即n32,

B組的圓心角是360°×144°

故答案為:20、32144;

2)①設(shè)男同學(xué)標(biāo)記為A、B;女學(xué)生標(biāo)記為1、2,可能出現(xiàn)的所有結(jié)果列表如下:

A

B

1

2

A

/

B,A

1,A

2,A

B

AB

/

1,B

2B

1

A,1

B,1

/

2,1

2

A2

B,2

1,2

/

共有 12 種可能的結(jié)果,且每種的可能性相同,其中剛好抽到一男一女的結(jié)果有8種,

∴恰好1名男生和1名女生被抽取參加5G體驗活動的概率為;

②∵至少1名女生被抽取參加5G體驗活動的有10種結(jié)果,

∴至少1名女生被抽取參加5G體驗活動的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園舉行用火柴棒擺“金魚”比賽,如圖所示,請仔細(xì)觀察并找出規(guī)律,解答下列問題:

(1)按照此規(guī)律,擺第n個圖時,需用火柴棒的根數(shù)是多少?

(2)求擺第50個圖時所需用的火柴棒的根數(shù);

(3)按此規(guī)律用1202根火柴棒擺出第n個圖形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解高郵市“新冠肺炎”疫情防控期間九年級學(xué)生線上學(xué)習(xí)情況,通過問卷網(wǎng)就“你對自己線上學(xué)習(xí)的效果評價”進(jìn)行了問卷調(diào)查,從中隨機(jī)抽取了部分樣卷進(jìn)行統(tǒng)計,繪制了如下的統(tǒng)計圖

根據(jù)統(tǒng)計圖信息,解答下列問題:

1)本次調(diào)查的樣本容量為    ;

2)請補(bǔ)全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中“較好”對應(yīng)的扇形圓心角的度數(shù)為    ;

4)若全市九年級線上學(xué)習(xí)人數(shù)有人,請估計對線上學(xué)習(xí)評價“非常好”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于任意兩點P1(x1,y1)P2(x2,y2)非常距離,給出如下定義:

|x1x2|≥|y1y2|,則點P1與點P2非常距離|x1x2|;

|x1x2||y1y2|,則點P1與點P2非常距離|y1y2|.

例如:點P1(1,2),點P2(3,5),因為|13||25|,所以點P1與點P2非常距離|25|3,也就是圖中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).

1)已知點A(0,1),

B(,0)C(2,1),D(1,2),E(0,)四個點中,與點A非常距離的點是;

Fx軸上一動點,直接寫出點A與點F非常距離的最小值;

2)已知點M是直線y2x6上的一個動點,

G的坐標(biāo)是(0,2),求點M與點G非常距離的最小值及相應(yīng)的點M的坐標(biāo);

N是以點(4,0)為圓心,為半徑的圓上的一個動點,直接寫出點M與點N非常距離的最小值及相應(yīng)的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4 cm,AD=8cmP,Q兩點分別從AB同時出發(fā),點P 沿折線AB—BC運(yùn)動,速度為2cm/s;點QBD上以cm/s的速度向終點D運(yùn)動.設(shè)點P的運(yùn)動時間為xs),△PAQ的面積為ycm2).

1BD長為_________cm;

2)當(dāng)點Q與點D重合時,x =_________s;

3)當(dāng)點P與點B重合時,x =_________s;

4)求yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王老師將某班近三個月跳躍類項目的訓(xùn)練情況做了統(tǒng)計,并繪制了折線統(tǒng)計圖,則根據(jù)圖中信息以下判斷錯誤的是(

A.男女生5月份的平均成績一樣

B.4月到6月,女生平均成績一直在進(jìn)步

C.4月到5月,女生平均成績的增長率約為

D.5月到6月女生平均成績比4月到5月的平均成績增長快

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假中,某校七年級開展“閱讀經(jīng)典,讀一本好書”的活動.為了解學(xué)生閱讀情況,從全年級學(xué)生中隨機(jī)抽取了部分學(xué)生調(diào)查讀書種類情況,并進(jìn)行統(tǒng)計分析,繪制了如下不完整的統(tǒng)計圖表:

讀書種類情況統(tǒng)計表

種類

頻數(shù)

百分比

A.科普類

a

32%

B.文學(xué)類

20

40%

C.藝術(shù)類

8

b

D.其他類

6

12%

請根據(jù)以上信息,解答下列問題:

1)填空:a   ,b   ,并補(bǔ)全條形統(tǒng)計圖;

2)若繪制“閱讀情況扇形統(tǒng)計圖”,則“藝術(shù)類”所對應(yīng)扇形的圓心角度數(shù)為   °;

3)若該校七年級共有800人,請估計全年級在本次活動中讀書種類為“藝術(shù)類”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+cx軸交于AB兩點(點AB左邊),與y軸交于點C

1)如圖1,已知A(1,0),B(3,0)

①直接寫出拋物線的解析式;

②點Hx軸上,M(1,0),連接AC、MC、HC,若CM平分∠ACH,求H的坐標(biāo);

2)如圖2,直線y=﹣1與拋物線y=﹣x2+bx+c交于拋物線對稱軸右側(cè)的點為點D,點E與點D關(guān)于x軸對稱.試判斷直線DB與直線AE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D在反比例函數(shù)的圖象上,過點Dx軸的平行線交y軸于點B0,2),過點A(,0)的直線ykx+by軸于點C,且BD2OC,tanOAC

1)求反比例函數(shù)的解析式;

2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;

3)點Ex軸上點A左側(cè)的一點,且AEBD,連接BE交直線CA于點M,求tanBMC的值.

查看答案和解析>>

同步練習(xí)冊答案