【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)

【答案】旗桿高約為12米.

【解析】試題分析:過點AAEMNE,過點CCFMNF,則EF=0.2m.由AEM是等腰直角三角形得出AE=ME,設(shè)AE=ME=xm,則MF=(x+0.2)m,FC=(28-x)m.在RtMFC中,由MF=CFtanMCF,解方程求出x的值,則MN=ME+EN

試題解析過點AAEMNE,

過點CCFMNF

EF= =0.2

RtAEM中,

∵∠MAE=45°,AE=ME

設(shè)AE=ME= (不設(shè)參數(shù)也可)

MF= 0.2,CF=28

RtMFC中,∠MFC=90°,MCF=30°

MF=CF·tanMCF

10.0 

MN12

答:旗桿高約為12米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,BEAD、BFCD,垂足分別為E、F

(1)求證:BEBF

(2)當(dāng)菱形ABCD的對角線AC8,BD6時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD,E,F(xiàn)分別是邊AD,BC的中點,AC分別交BE,DF于點M,N,給出下列結(jié)論:①△ABM≌△CDN;AM=AC;DN=2NF;SAMBSABC其中正確的結(jié)論是__ __.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A從原點O出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,5秒后,兩點相距15個單位長度,已知點B的速度是點A的速度的2倍(速度單位:單位長度/秒)

1)求出點A、點B運動的速度;并在數(shù)軸上標(biāo)出A、B兩點從原點O出發(fā)運動5秒時的位置.

2)若AB兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,

①再過幾秒,A、B兩點重合?

②再過幾秒,可以讓A、BO三點中一點是另外兩點所成線段的中點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC90°,ABACE,F分別為AC,BC的中點,連接EFED,FD

1)求證:EDEF

2)若∠BAD60°,AC平分∠BAD,AC6,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索發(fā)現(xiàn):

……

根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題:

1      ;

2)利用你發(fā)現(xiàn)的規(guī)律計算:

3)利用規(guī)律解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當(dāng)PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,A為x軸正半軸上的動點,經(jīng)過點A(t,0)作垂直于x軸的直線l,在直線l上取點B,點B在第一象限,AB=4,直線OB:y1=kx(k為常數(shù)).

(1)當(dāng)t=2時,求k的值;

(2)經(jīng)過O,A兩點作拋物線y2=ax(x﹣t)(a為常數(shù),a>0),直線OB與拋物線的另一個交點為C.

①用含a,t的式子表示點C的橫坐標(biāo);

②當(dāng)t≤x≤t+4時,|y1﹣y2|的值隨x的增大而減。划(dāng)x≥t+4時,|y1﹣y2|的值隨x的增大而增大,求a與t的關(guān)系式并直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案