【題目】知識遷移

我們知道,函數(shù)的圖像是由二次函數(shù)的圖像向右平移m個單位,再向上平移n個單位得到類似地,函數(shù)的圖像是由反比例函數(shù)的圖像向右平移m個單位,再向上平移n個單位得到,其對稱中心坐標為(m,n

理解應用

函數(shù)的圖像可以由函數(shù)的圖像向右平移 個單位,再向上平移 個單位得到,其對稱中心坐標為

靈活運用

如圖,在平面直角坐標系xOy中,請根據(jù)所給的的圖像畫出函數(shù)的圖像,并根據(jù)該圖像指出,當x在什么范圍內(nèi)變化時,?

實際應用

某老師對一位學生的學習情況進行跟蹤研究假設剛學完新知識時的記憶存留量為1.新知識學習后經(jīng)過的時間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關(guān)系為;若在4)時進行一次復習,發(fā)現(xiàn)他復習后的記憶存留量是復習前的2倍(復習時間忽略不計),且復習后的記憶存量隨x變化的函數(shù)關(guān)系為如果記憶存留量為時是復習的最佳時機點,且他第一次復習是在最佳時機點進行的,那么當x為何值時,是他第二次復習的最佳時機點?

【答案】(1)理解應用:1,1,(1,1);(2)靈活應用:當﹣2≤x<2時;(3)實際應用:當x=12時,是他第二次復習的“最佳時機點”.

【解析】

試題分析:理解應用:“知識遷移”得到雙曲線的圖象平移變換的規(guī)律:上加下減.由此得到答案:

靈活應用:平移規(guī)律作出圖象;

實際應用:先求出第一次復習的“最佳時機點”(4,1),然后帶入y2,求出解析式,然后再求出第二次復習的“最佳時機點”.

試題解析:理解應用:根據(jù)“知識遷移”易得,函數(shù)的圖象可由函數(shù)的圖象向右平移 1個單位,再向上平移 1個單位得到,其對稱中心坐標為 (1,1).故答案為:1,1,(1,1);

靈活應用:將的圖象向右平移2個單位,然后再向下平移兩個單位,即可得到函數(shù)的圖象,其對稱中心是(2,﹣2).圖象如圖所示:

由y=﹣1,得,解得x=﹣2.

由圖可知,當﹣2≤x<2時,y≥﹣1;

實際應用:

當x=t時,,則由=,解得:t=4,即當t=4時,進行第一次復習,復習后的記憶存留量變?yōu)?,點(4,1)在函數(shù)的圖象上,則,解得:a=﹣4,,當=,解得:x=12,即當x=12時,是他第二次復習的“最佳時機點”.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:善于思考的小軍在解方程組時,采用了一種“整體代換”的解法:將方程②變形:4x+10y+y=5 即2(2x+5y)+y=5③

把方程①帶入③得:2×3+y=5,∴y=﹣1

把y=﹣1代入①得x=4,∴方程組的解為

請你解決以下問題:(1)模仿小軍的“整體代換”法解方程組;

(2)已知x,y滿足方程組

(i)求的值;

(ii)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,是確定性事件的是(  )

A.甲、乙、丙三人隨意站成一排,而甲恰好站中間

B.從含有1個次品的10個產(chǎn)品中,隨意抽取一個產(chǎn)品恰好是次品

C.早晨,太陽從西方升起

D.明天早晨八點是上班高峰期,學校門前的公路上必塞

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(ab)(ab)b(b2)的計算結(jié)果是( )

A. a2b B. a22 C. a22b D. 2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍。乒乓球拍每副定價30元,乒乓球每盒定價5元,經(jīng)洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠。該班需球拍5副,乒乓球若干盒(不小于5盒)。
問:
(1)設購買乒乓球x盒時,在甲家購買所需多少元?在乙家購買所需多少元?(用含x的代數(shù)式表示,并化簡)
(2)當購買乒乓球多少盒時,兩種優(yōu)惠辦法付款一樣?
(3)當購買30盒乒乓球時,若讓你選擇一家商店去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一組數(shù)據(jù):6、3、4、x、7,它們的平均數(shù)是10,則這組數(shù)據(jù)的中位數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師給出一個二次函數(shù),甲、乙兩名同學各指出這個函數(shù)的一個性質(zhì).甲:函數(shù)圖象的頂點在x軸上;乙:拋物線開口向下;已知這兩位同學的描述都正確,請你寫出滿足上述所有性質(zhì)的一個二次函數(shù)表達式_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.哥哥的身高比弟弟高是必然事件
B.今年中秋節(jié)有雨是不確定事件
C.隨機拋一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D.“彩票中獎的概率為 ”表示買5張彩票肯定會中獎

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】xyz=234,且x+y+z=18,則xyz=_________.

查看答案和解析>>

同步練習冊答案