【題目】如圖,點A在∠MON的邊ON上,ABOMBAE=OB,DEONE,AD=AO,DCOMC

1)求證:四邊形ABCD是矩形;

2)若DE=3,OE=9,求AB、AD的長.

【答案】1)證明見解析;(2AB、AD的長分別為35

【解析】

1)證RtABORtDEAHL)得∠AOB=DAE,ADBC證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知RtABORtDEAAB=DE=3.設(shè)AD=x,則OA=x,AE=OEOA=9x.在RtDEA中,由得:.

1)證明:∵ABOMB,DEONE

.

RtABORtDEA中,

RtABORtDEAHL).

∴∠AOB=DAE.∴ADBC

又∵ABOM,DCOM,∴ABDC

∴四邊形ABCD是平行四邊形.

,∴四邊形ABCD是矩形;

2)由(1)知RtABORtDEA,AB=DE=3

設(shè)AD=x,則OA=x,AE=OEOA=9x

RtDEA中,由得:

,解得

AD=5AB、AD的長分別為35

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是弧BDC的中點,AEACA,與⊙OCB的延長線交于點F,E,且弧BF=弧AD.

(1)求證:△ADC∽△EBA;

(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費,乙公司表示:按每千克16元收費,另加包裝費3元,設(shè)小明快遞物品x千克.

(1)根據(jù)題意,填寫下表:

快遞物品重量(千克)

0.5

1

3

4

甲公司收費(元)

22

乙公司收費(元)

11

51

67

(2)設(shè)甲快遞公司收費y1元,乙快遞公司收費y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)x>3時,小明應(yīng)選擇哪家快遞公司更省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A、C、F在坐標(biāo)軸上,EOA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標(biāo)為(30),則點D的坐標(biāo)為( 。

A. 1,2.5B. 1,1+ C. 1,3D. 11+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD對角線交于點O,AECDE,AE=OD,則∠CAE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,不能判斷四邊形ABCD是平行四邊形的是( 。

A. ABDC,AD=BC B. ABDC,ADBC C. AB=DC,AD=BC D. OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于點M,交BE于點G,AD平分MAC,交BC于點D,交BE于點F.

(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;

(2)若C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)已知E,F分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當(dāng)E,F分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.

試探究下列問題:

1)如圖1,若點E不是邊BC的中點,F不是邊CD的中點,且CE=DF,上述結(jié)論是否仍然成立?(請直接回答成立不成立),不需要證明)

2)如圖2,若點EF分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論,是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;

3)如圖3,在(2)的基礎(chǔ)上,連接AEBF,若點M,N,P,Q分別為AE,EF,FD,AD的中點,請判斷四邊形MNPQ矩形、菱形、正方形中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案