如圖,AB是半圓O的直徑,CD垂直AB于D,EC是切線,E為切點(diǎn).
求證:CE=CF.
連接EO,
∵EC是切線,E為切點(diǎn),
∴EO⊥EC,
∴∠1+∠2=90°,
∵AB是半圓O的直徑,CD垂直AB于D,
∴∠FDB=90°,
∴∠FBD+∠4=90°,
∵∠1=∠FBD,∠3=∠4,
∴∠4=∠3=∠2,
∴CE=CF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)為(1,-1),半徑
5

(1)求A,B,C,D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的切線解析式;
(3)問過點(diǎn)A的切線與過點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線AD與⊙O相切于點(diǎn)A,點(diǎn)C在⊙O著,∠DAC=∠ACD,直線DC與AB的延長(zhǎng)線交于點(diǎn)E.AF⊥ED于點(diǎn)F,交⊙O于點(diǎn)G.
(k)求證:DE是⊙O的切線;
(2)已知⊙O的半徑是6cm,EC=xcm,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB分別切⊙O于A、B,PA=10cm,C是劣弧AB上的點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)C的切線分別交PA、PB于點(diǎn)E、F.則△PEF的周長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,AB為直徑,半徑OE⊥AB,M為半圓上任意一點(diǎn),過M作⊙O的切線交OE的延長(zhǎng)線與P,過A作弦ACMP,連MB、BC,BM交OP于N點(diǎn).
(1)求證:MP=PN;
(2)已知AC=4,PE=1,求sin∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在半徑OB延長(zhǎng)線上,∠BCD=∠A=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若OC⊥AB,AC=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB與弦CD相交于點(diǎn)E,AB⊥CD,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CDBF;
(2)若⊙O的半徑為5,cos∠BCD=
4
5
,求線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖四邊形ABCD內(nèi)接于⊙O,AB為直徑,PD切⊙O于D,與BA延長(zhǎng)線交于P點(diǎn),已知∠BCD=130°,則∠ADP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在半徑為4的⊙O中,點(diǎn)C是以AB為直徑的半圓的中點(diǎn),OD⊥AC,垂足為D,點(diǎn)E是射線AB上的任意一點(diǎn),DFAB,DF與CE相交于點(diǎn)F,設(shè)EF=x,DF=y.
(1)如圖1,當(dāng)點(diǎn)E在射線OB上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域;
(2)如圖2,當(dāng)點(diǎn)F在⊙O上時(shí),求線段DF的長(zhǎng);
(3)如果以點(diǎn)E為圓心、EF為半徑的圓與⊙O相切,求線段DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案