【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x 軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是______

【答案】

【解析】試題解析:①如圖1,當∠POQ=OAH=30°,若以P,O,Q為頂點的三角形與AOH全等,那么A、P重合;

∵∠AOH=60°,

∴直線OA:y=x,

聯(lián)立拋物線的解析式得: ,

解得: ,

A(,3);

②當∠POQ=AOH=60°,此時POQ≌△AOH,

易知∠POH=30°,則直線y=x,聯(lián)立拋物線的解析式,得: ,

解得: ,

P(, ),那么A( );

③當∠OPQ=90°POQ=AOH=60°時,此時QOP≌△AOH;

易知∠POH=30°,則直線y=x,聯(lián)立拋物線的解析式,得: ,

解得:

P(, ),

OP=,QP=

OH=OP=,AH=QP=,

A( );

④當∠OPQ=90°,POQ=OAH=30°,此時OQP≌△AOH;

此時直線y=x,聯(lián)立拋物線的解析式,得: ,

解得: ,,

P(,3),

QP=2,OP=2,

OH=QP=2,AH=OP=2,

A(2,2).

綜上可知:符合條件的點A有四個,分別為:(,3)或(, )或 或(2,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中:①一個有理數(shù)不是正數(shù)就是負數(shù);②射線AB和射線BA是同一條射線;③0的相反數(shù)是它本身;④兩點之間,線段最短,正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了100 m,此時自B處測得建筑物頂部的仰部角是45°已知測角儀的高度是15 m,請你計算出該建筑物的高度.(取≈1732,結果精確到1 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(2,-3)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市出租車計費方法如圖所示,xkm)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下面的問題:

1)出租車的起步價是多少元?當x3時,求y關于x的函數(shù)關系式.

2)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標系.

①求拋物線的解析式;

②要使高為3米的船通過,則其寬度須不超過多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過,則其寬度須不超過多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9的算術平方根是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關系式;

(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,“和諧號”高鐵列車的小桌板收起時近似看作與地面垂直,小桌板的支架底端與桌面頂端的距離OA = 75厘米.展開小桌板使桌面保持水平,此時CB⊥AO,∠AOB =∠ACB = 37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)

查看答案和解析>>

同步練習冊答案