【題目】如圖,已知在⊙O中,AB=4, AF=6,AC是直徑,AC⊥BD于F,圖中陰影部分的面積是( )
A. B. C. D.
【答案】D
【解析】
利用勾股定理求得BD=2BF=4,連接OB、OD、BC,先求得∠ABC=90°,進而根據(jù)射影定理求得FC=2,從而求得直徑的長,根據(jù)余弦函數(shù)求得∠BAF=30°,進而得出∠BOD=120°,最后根據(jù)S陰影=S扇形-S△BOD即可求得陰影的面積.
解:∵AC是直徑,AC⊥BD于F,
∴BF=DF,,
∴∠BAC=∠DAC,
在RT△ABF中,
∴BD=2BF=4,
連接OB、OD、BC,
∵AC是直徑,
∴∠ABC=90°,
∴BF2=AFFC,即(2)2=6FC,
∴FC=2,
∴直徑AC=AF+FC=6+2=8,
∴⊙O的半徑為4,
∵AB=4,AF=6,
∴,
∴∠BAF=30°,
∴∠BAD=60°,
∴∠BOD=120°,
∵OC=4,FC=2,
∴OF=2,
∴
故選擇:D.
科目:初中數(shù)學 來源: 題型:
【題目】通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can).
如圖(1)在△中,,底角的鄰對記作,這時,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義解下列問題:
(1)= ;
(2)如圖(2),在△中,,,,求△的周長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點D,E,點P是線段DE上一點,CP的延長線交AB于點Q,如果 = ,那么S△DPQ:S△CPE的值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某射擊隊要從甲、乙、丙、丁四人中選拔一名選手參賽,在選拔賽中,每人射擊10次,然后從他們的成績平均數(shù)(環(huán))及方差兩個因素進行分析,甲、乙、丙的成績分析如表所示,丁的成績?nèi)鐖D所示.
甲 | 乙 | 丙 | |
平均數(shù) | 7.9 | 7.9 | 8.0 |
方差 | 3.29 | 0.49 | 1.8 |
根據(jù)以上圖表信息,參賽選手應選( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從下面兩題中只選做一題,如果做了兩題的,只按第(1)題評分:
(1)用“=>”與“<=”表示一種運算法則:(a=>b)=﹣b,(a<=b)=﹣a,如(2=>3)=﹣3,則(2010=>2011)<=(2009=>2008)=________(括號運算優(yōu)先)
(2)用“>”或“<”號填空:sin40°cos50°﹣________0.(可用計算器計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器城經(jīng)銷A型號彩電,今年四月份每臺彩電售價與去年同期相比降價500元,結(jié)果賣出彩電的數(shù)量相同,但去年銷售額為5萬元,今年銷售額為4萬元.
(1)問去年四月份每臺A型號彩電售價是多少元?
(2)為了改善經(jīng)營,電器城決定再經(jīng)銷B型號彩電.已知A型號彩電每臺進貨價為1800元,B型號彩電每臺進貨價為1500元,電器城預計用不多于3.3萬元且不少于3.2萬元的資金購進這兩種彩電共20臺,問有哪幾種進貨方案?
(3)電器城準備把A型號彩電繼續(xù)以原價出售,B型號彩電以每臺1800元的價格出售,在這批彩電全部賣出的前提下,如何進貨才能使電器城獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“網(wǎng)購”的增多,快遞業(yè)務發(fā)展迅速。我市某快遞公司今年八月份與十月份完成投遞的快遞總件數(shù)分別為萬件和萬件,假定該公司每月的投遞總件數(shù)的增長率相同.
(1)求該快遞公司每月的投遞總件數(shù)的月平均增長率;
(2)由于“雙十一”購買量激增,預計11月需投遞的快遞總件數(shù)的增長率將是原來倍,如果每人每月最多可投遞快遞萬件,該公司現(xiàn)有名業(yè)務員,是否能完成當月投遞任務?如果不能,需臨時招聘幾名業(yè)務員?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com