【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+x軸于點B,交y軸于點A,過點C1,0)作x軸的垂線l,將直線l繞點C按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為αα180°.

1)當(dāng)直線l與直線y=x+平行時,求出直線l的解析式;

2)若直線l經(jīng)過點A,①求線段AC的長;②直接寫出旋轉(zhuǎn)角α的度數(shù);

3)若直線l在旋轉(zhuǎn)過程中與y軸交于D點,當(dāng)ABDACD、BCD均為等腰三角形時,直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).

【答案】1yx;(2)①AC2;②α30°;(3α15°60°105°150°

【解析】

1)設(shè)直線l的解析式為yxb,把點C1,0)代入求出b即可;

2)①求出點A的坐標(biāo),利用兩點間距離公式即可求出AC的長;②如圖1中,由CEOA,推出∠ACE=∠OAC,由tanOAC,推出∠OAC30°,即可解決問題;

3)根據(jù)等腰三角形的判定和性質(zhì),分情況作出圖形,進行求解即可.

解:(1)當(dāng)直線l與直線yx平行時,設(shè)直線l的解析式為yxb,

∵直線l經(jīng)過點C1,0),

0b,

b,

∴直線l的解析式為yx;

2)①對于直線yx,令x0y,令y0x1

A0),B1,0),

C1,0),

AC,

②如圖1中,作CEOA

∴∠ACE=∠OAC,

tanOAC,

∴∠OAC30°

∴∠ACE30°,

α30°

3)①如圖2中,當(dāng)α15°時,

CEspan>OD,

∴∠ODC15°,

∵∠OAC30°,

∴∠ACD=∠ADC15°,

ADACAB,

∴△ADBADC是等腰三角形,

OD垂直平分BC,

DBDC

∴△DBC是等腰三角形;

②當(dāng)α60°時,易知∠DAC=∠DCA30°,

DADCDB

∴△ABD、ACDBCD均為等腰三角形;

③當(dāng)α105°時,易知∠ABD=∠ADB=∠ADC=∠ACD75°,∠DBC=∠DCB15°

∴△ABD、ACDBCD均為等腰三角形;

④當(dāng)α150°時,易知BDC是等邊三角形,

ABBDDCAC

∴△ABD、ACD、BCD均為等腰三角形,

綜上所述:當(dāng)α15°60°105°150°時,ABDACD、BCD均為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為接近度.在研究接近度時,應(yīng)保證相似圖形的接近度相等.

(1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為,將菱形的接近度定義為,于是,越小,菱形越接近于正方形.

①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;

②當(dāng)菱形的“接近度”等于 時,菱形是正方形.

(2)設(shè)矩形相鄰兩條邊長分別是),將矩形的接近度定義為,于是越小,矩形越接近于正方形.

你認(rèn)為這種說法是否合理?若不合理,給出矩形的接近度一個合理定義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,的中點,過點,交于點,交于點.,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各變量之間是反比例關(guān)系的是(  )

A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數(shù)

C. 汽車行駛的時間與速度 D. 電線的長度與其質(zhì)量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點,點A(﹣20),點B0,2).

1)直接寫求∠BAO的度數(shù);

2)如圖1,將AOB繞點O順時針得AOB,當(dāng)A恰好落在AB邊上時,設(shè)ABO的面積為S1,BAO的面積為S2S1S2有何關(guān)系?為什么?

3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其兩邊分別交邊AB,AC于點E,F(xiàn).

(1)求證:△ABD是等邊三角形;

(2)求證:BE=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運球是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是_____度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在_____等級;

(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間小明去永輝超市購物,恰逢永輝超市滿140099促銷活動,小明準(zhǔn)備提前購置一些年貨,已知的單價總和是100200之間的整數(shù),小明粗略測算了一下發(fā)現(xiàn)自己所購年貨總價為1305元,不能達到超市的促銷活動金額. 于是小明又購買了 各一件,這樣就能參加超市的促銷活動,最后剛好付款1305. 小明經(jīng)仔細(xì)計算發(fā)現(xiàn)前面粗略測算時把 的單價看反了,那么小明實際總共買了______件年貨.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Δ中,已知中點,點在線段上以每秒的速度由點向點運動,同時點在線段上由點向點運動。當(dāng)點的運動速度為每秒____時,能夠在某一時刻使得ΔΔ全等

查看答案和解析>>

同步練習(xí)冊答案