如圖,在矩形ABCD中,AB=1,AD=2,AD繞著點A順時針旋轉(zhuǎn),當(dāng)點D落在BC上點D′時,則AD′=______,∠AD′B=______°.
∵AD=2,
∴AD=AD′=2,
Rt△ABD中,
∵AB=1,AD′=2,
∴AB=
1
2
AD′=1,
∴∠AD′B=30°.
故答案為:2;30.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在網(wǎng)格中建立了平面直角坐標(biāo)系,每個小正方形的邊長均為1個單位長度,將四邊形ABCD繞坐標(biāo)原點O按順時針方向旋轉(zhuǎn)180°后得到四邊形A1B1C1D1
(1)直接寫出D1點的坐標(biāo);
(2)將四邊形A1B1C1D1平移,得到四邊形A2B2C2D2,若D2(4,5),畫出平移后的圖形.(友情提示:畫圖時請不要涂錯陰影的位置哦。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC與△DEF關(guān)于點O成中心對稱,△ABC與△DEF的頂點均在格點上,請按要求完成下列各題.
(1)在圖中畫出點O的位置.
(2)將△ABC先向右平移4個單位長度,再向下平移2個單位長度,得到△A1B1C1,請畫出△A1B1C1;
(3)在網(wǎng)格中畫出格點M,使A1M平分∠B1A1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點A(2,1),B(2,0),C(1,-1),請在圖上畫出△ABC,并畫出與△ABC關(guān)于原點O對稱的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠C=Rt∠,∠B=50°,把△ABC繞點A按順時針方向旋轉(zhuǎn)30°,得△AB′C′,B′C′交AB于點D,則∠BDB′的度數(shù)( 。
A.60°B.30°C.80°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,-2).
(1)把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標(biāo);
(2)以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A2B2C2,并寫出點C2的坐標(biāo).
(3)以原點O為旋轉(zhuǎn)中心,畫出把△ABC順時針旋轉(zhuǎn)90°后所得的圖形△A3B3C3,并寫出C3,的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉(zhuǎn),當(dāng)點A′落在AB邊上時,CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在正方形網(wǎng)格中,圖①經(jīng)過______變換可以得到圖②;圖③是由圖②經(jīng)過旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點______(填“A”或“B”或“C”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將Rt△ABC繞點A逆時針旋轉(zhuǎn)90°得到Rt△AB1C1,陰影部分為線段BC掃過的區(qū)域,已知AB=4,BC=3,則陰影部分面積為( 。
A.2πB.
9
4
π
C.
9
2
π
D.6

查看答案和解析>>

同步練習(xí)冊答案