【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)B(﹣2,2),過反比例函數(shù)y=(x<0,常數(shù)k<0)圖象上一點(diǎn)A(﹣,m)作y軸的平行線交直線l:y=x+2于點(diǎn)C,且AC=AB.
(1)分別求出m、k的值,并寫出這個反比例函數(shù)解析式;
(2)發(fā)現(xiàn):過函數(shù)y=(x<0)圖象上任意一點(diǎn)P,作y軸的平行線交直線l于點(diǎn)D,請直接寫出你發(fā)現(xiàn)的PB,PD的數(shù)量關(guān)系 ;
應(yīng)用:①如圖2,連接BD,當(dāng)△PBD是等邊三角形時,求此時點(diǎn)P的坐標(biāo);
②如圖3,分別過點(diǎn)P、D作y的垂線交y軸于點(diǎn)E、F,問是否存在點(diǎn)P,使得矩形PEFD的周長取得最小值?若存在,請求出此時點(diǎn)P的坐標(biāo)及矩形PEFD的周長;若不存在,請說明理由.
【答案】(1)y=﹣(x<0)(2)PB=PD①(1﹣, +1);②存在,(﹣1,2),4
【解析】
試題分析:(1)求出AC、AB的表達(dá)式,根據(jù)AC=AB求出m的值,然后利用待定系數(shù)法求出k的值即可;
(2)設(shè)P(﹣m,)(m>0),則D(﹣m,﹣m+2),根據(jù)勾股定理求出PB的長即可;①由△PBD是等邊三角形,于是得到PB=BD=PD,根據(jù)等邊三角形的性質(zhì)得到(2﹣m)=(+m﹣2)解得:m=3﹣,或m=﹣1,于是得到P(﹣3,)或P(1﹣, +1);②根據(jù)矩形的周長的計算公式得到矩形PEFD的周長=(﹣)2+4,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
試題解析:(1)AC=m﹣,AB=,
∵AC=AF,
∴m=4,
∴點(diǎn)A(﹣,4),
∴k=﹣2,
∴y=﹣(x<0);
(2)設(shè)P(﹣m,)(m>0),則D(m,m+2),
∴PD=﹣(﹣m+2)=+m﹣2,
BP==+m﹣2,
∴PD=PB;
故答案為:PB=PD;
①∵△PBD是等邊三角形,
∴PB=BD=PD,
∵PD∥y軸,
∴(2﹣m)=(+m﹣2)
∴+m﹣2=,
∴m=3﹣,或m=﹣1,
∴P(1﹣, +1);
②答:存在滿足題設(shè)條件的點(diǎn)P.
設(shè)P(﹣m,)(m>0),則D(﹣m,﹣m+2),
∴矩形PEFD的周長=2(PD+PE)=2(+m﹣2+m)=+4m﹣4=(﹣)2+4,
∴當(dāng)﹣=0,即m=2時,P(﹣1,2)時,矩形PEFD的周長取得最小值為4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(提示:正方形的四條邊都相等,四個角都是直角)
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖2,線段CF、BD所在直線的位置關(guān)系為______,線段CF、BD的數(shù)量關(guān)系為______;
②當(dāng)點(diǎn)D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果AB≠AC,∠BAC是銳角,點(diǎn)D在線段BC上,當(dāng)∠ACB滿足 條件時,CF⊥BC(點(diǎn)C、F不重合),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市將某品牌的洗滌液按照進(jìn)價提高50%后標(biāo)價,再打八折銷售,仍可獲利30元.則這種商品的進(jìn)價是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市地鐵2號線已開工,全長約332000m,將332000科學(xué)記數(shù)法表示應(yīng)為( 。
A. 0.332×106 B. 3.32×105 C. 33.2×104 D. 332×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,AB=BC=4,⊙B與AB、BC交于E、F,點(diǎn)P是弧EF上的一個動點(diǎn),連接PC,線段PC繞P點(diǎn)逆時針旋轉(zhuǎn)90°到PD,連接CD,AD.
(1)求證:△BPC∽△ADC;
(2)當(dāng)四邊形ABCD滿足AD∥CB且是面積為12時,求⊙B的半徑;
(3)若⊙B的半徑的為2,當(dāng)點(diǎn)P沿弧EF從點(diǎn)E運(yùn)動至點(diǎn)PC與⊙B相切時,求點(diǎn)D的運(yùn)動路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)中的________數(shù)據(jù)與_________數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差,極差能夠反映數(shù)據(jù)的變化_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“六一”兒童節(jié)前夕,某幼兒園準(zhǔn)備購買彩紙和拼圖兩種玩具,已知購買1盒彩紙和2盒拼圖共需50元,購買2盒彩紙和3盒拼圖共需80元.
(1)一盒彩紙和一盒拼圖的價格各是多少元?
(2)該幼兒園準(zhǔn)備購買這兩種玩具共50盒(要求毎種產(chǎn)品都要購買),且購買總金額不能超過850元,至少購買彩紙多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com