【題目】如圖①,在平面直角坐標(biāo)系中,拋物線yax2bxca≠0)經(jīng)過點(diǎn)D2,4),與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C0,4),連接AC,CD,BC, 其且AC=5

1)求拋物線的解析式;

2)如圖②,點(diǎn)P是拋物線上的一個動點(diǎn),過點(diǎn)Px軸的垂線l,l分別交x軸于點(diǎn)E,交直線AC于點(diǎn)M.設(shè)點(diǎn)P的橫坐標(biāo)為m.當(dāng)0<m≤2時,過點(diǎn)MMGBC,MGx軸于點(diǎn)G,連接GC,則m為何值時,△GMC的面積取得最大值,并求出這個最大值;

3)當(dāng)-1<m≤2時,是否存在實(shí)數(shù)m,使得以P,CM為頂點(diǎn)的三角形和△AEM相似?若存在,求出相應(yīng)m的值;若不存在,請說明理由.

【答案】1y=x2+x+4;(2)當(dāng)m=時,S最大,即S最大=2;(32

【解析】

1)先通過勾股定理求的點(diǎn)A的坐標(biāo),把A、CD三點(diǎn)坐標(biāo)代入即可求得拋物線的解析式;

2)由A、C坐標(biāo)可求得直線AC解析式,再用m表示出點(diǎn)M坐標(biāo),表示出ME,再由△BCO∽△GME可表示出GE,求得OG,再利用面積的和差可得到△GMC的面積,利用二次函數(shù)的性質(zhì)可求得其最大值;

3)分∠CPM90°和∠PCM90°兩種情況,當(dāng)∠CPM90°時,可得PCx軸,容易求得P點(diǎn)坐標(biāo)和m的值;當(dāng)∠PCM90°時,設(shè)PCx軸于點(diǎn)F,可利用相似三角形的性質(zhì)先求得F點(diǎn)坐標(biāo),可求得直線CF的解析式,再聯(lián)立拋物線解析式可求得P點(diǎn)坐標(biāo)和相應(yīng)的m的值.

解(1)∵點(diǎn)C0,4),

OC4,

AC5,

∴在Rt△AOC中,∠AOC90°

OA

∴ A3,0

A3,0)、C0,4D24)代入拋物線yax2bxca≠0)中

,

解得,

拋物線解析式為y=-x2x4;

2)由A3,0),C0,4)可得直線AC解析式為y=-x4,

∴M坐標(biāo)為(m,-m4),

∵M(jìn)G∥BC,

∴∠CBO∠MGE,且∠COB∠MEG90°

∴△BCO∽△GME,

,即

∴GE=-m1,

∴OGOEGEm1

,

當(dāng)m時,S最大,即S最大2;

3)根據(jù)題意可知△AEM是直角三角形,而△MPC中,∠PMC∠AME為銳角,

∴△PCM的直角頂點(diǎn)可能是PC,

第一種情況:當(dāng)∠CMPM90°時,如圖,

CP∥x軸,此時點(diǎn)P與點(diǎn)D重合,

點(diǎn)P2,4),此時m2

第二種情況:當(dāng)∠PCM90°時,如圖,

如圖,延長PCx軸于點(diǎn)F,由△FCA∽△COA,得

∴AF,

∴OF

∴F(-,0),

直線CF的解析式為yx4,

聯(lián)立直線CF和拋物線解析式可得

解得,,

∴P坐標(biāo)為(),此時m

綜上可知存在滿足條件的實(shí)數(shù)m,其值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動,點(diǎn)和點(diǎn)同時出發(fā),速度相同,到達(dá)點(diǎn)或點(diǎn)后運(yùn)動停止.

1)求證:;

2)若,求的度數(shù);

3)若的外心在其內(nèi)部時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個公共點(diǎn).

1)求b的取值范圍;

2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時,函數(shù)y的取值范圍是n≤y≤6-2m,求mn的值;

3)若在自變量x的值滿足b≤x≤b+3的情況下,對應(yīng)函數(shù)y的最小值為,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)證明】

如圖1,點(diǎn)EF分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.

小聰把ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°ADG,通過證明AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD

【類比引申】

1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EFBE、DF之間的數(shù)量關(guān)系,并證明;

【聯(lián)想拓展】

2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你依圖解答下列問題:

(1)a=   ,b=   ,c=   

(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年 3 月 12 日植樹節(jié)期間, 學(xué)校預(yù)購進(jìn) A、B 兩種樹苗,若購進(jìn) A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購進(jìn) A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.

(1)求購進(jìn) A、B 兩種樹苗的單價(jià);

(2)若該單位準(zhǔn)備用不多于 8000 元的錢購進(jìn)這兩種樹苗共 30 棵,求 A 種樹苗至少需購進(jìn)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC.將△ABC沿著BC方向平移得到△DEF,其中點(diǎn)E在邊BC上,DEAC相交于點(diǎn)O.連接AE、DCAD,當(dāng)點(diǎn)E在什么位置時,四邊形AECD為矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),ADCD,(點(diǎn)D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長線相交于點(diǎn)E,且DE=12,AD=9,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn),當(dāng)鐘面顯示3點(diǎn)30分時,分針垂直于桌面,點(diǎn)距離桌面的高度為公分,圖②表示鐘面顯示3點(diǎn)45時,點(diǎn)距桌面的高度為公分,若鐘面顯示3點(diǎn)55時,點(diǎn)距離桌面的高度為__________公分.

查看答案和解析>>

同步練習(xí)冊答案