【題目】如圖,已知點A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若的面積為6,則k=___.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:AB是圓O的直徑,AB=10,點C為圓O上異于點A、B的一點,點M為弦BC的中點.
(1)如果AM交OC于點E,求OE:CE的值;
(2)如果AM⊥OC于點E,求∠ABC的正弦值;
(3)如果AB:BC=5:4,D為BC上一動點,過D作DF⊥OC,交OC于點H,與射線BO交于圓內(nèi)點F,請完成下列探究.
探究一:設(shè)BD=x,FO=y,求y關(guān)于x的函數(shù)解析式及其定義域.
探究二:如果點D在以O為圓心,OF為半徑的圓上,寫出此時BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地方衛(wèi)視有一檔沖關(guān)游戲,游戲規(guī)定:單獨一個人參加游戲,以選出正確答案者能順利過關(guān);兩個人一起參加游戲,主要考查兩人的默契程度,以兩人選出答案的序號一致才能一同順利過關(guān).
(1)小王單獨參加游戲,若選定的問題有5個備選答案,其中有2個答案是正確的,求小王順利過關(guān)的概率;
(2)小王和小李一起參加游戲,若小王的問題有4個備選答案,小李的問題有3個備選答案,求小王和小李能一同順利過關(guān)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為 ;
(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲先出發(fā),甲出發(fā)0.2小時后乙開汽車前往,設(shè)甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km),如圖是y1與y2關(guān)于x的函數(shù)圖像.
(1)求x為何值時,兩人相遇?
(2)求x為何值時,兩人相距5km?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,BC為⊙O的弦,過O點作OD⊥BC,交⊙O的切線CD于點D,交⊙O于點E,連接AC、AE,且AE與BC交于點F.
(1)連接BD,求證:BD是⊙O的切線;
(2)若AF:EF=2:1,求tan∠CAF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖這個三角形的構(gòu)造法其兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.利用 規(guī)律計算:25-5×24+10×23-10×22+5×2-1的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,在△ABC中,∠C=30°,我們把∠A的對邊與∠C 的對邊的比叫做∠A的鄰弦,記作thi A,即thi A== .請解答下列問題:
已知:在△ABC中,∠C=30°.
(1)若∠A=45°,求thi A的值;
(2)若thi A=,則∠A= °;
(3)若∠A是銳角,探究thi A與sinA的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點A逆時針旋轉(zhuǎn)α得到△ADE,ED的延長線與BC相交于點F,連接AF、EC.
(1)如圖,若∠BAC=α=60°.
①證明:AB∥EC;
②證明:△DAF∽△DEC;
(2)如圖,若∠BAC<α,EF交AC于G點,圖中有相似三角形嗎?如果有,請直接寫出所有相似三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com