【題目】如圖,在矩形ABCD中,∠B的平分線BE與AD交于點E,∠BED的平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= . (結果保留根號)
【答案】
【解析】解:延長EF和BC,交于點G
∵矩形ABCD中,∠B的角平分線BE與AD交于點E,
∴∠ABE=∠AEB=45°,
∴AB=AE=9,
∴直角三角形ABE中,BE= = ,
又∵∠BED的角平分線EF與DC交于點F,
∴∠BEG=∠DEF
∵AD∥BC
∴∠G=∠DEF
∴∠BEG=∠G
∴BG=BE=
由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC
∴
設CG=x,DE=2x,則AD=9+2x=BC
∵BG=BC+CG
∴ =9+2x+x
解得x=
∴BC=9+2( ﹣3)=
故答案為:
首先延長EF和BC且延長線交于點G,接下來,再證明三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后再證明三角形BEG為等腰三角形,最后,根據(jù)△EFD∽△GFC得出CG與DE的倍數(shù)關系,并根據(jù)BG=BC+CG進行計算即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,A(1,3),B(2,1),直角坐標系中存在點C,使得O,A,B,C四點構成平行四邊形,則C點的坐標為______________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四幅圖像分別表示變量之間的關系,請按圖像的順序,將下面的四種情境與之對應排序.
a.運動員推出去的鉛球(鉛球的高度與時間的關系);
b.靜止的小車從光滑的斜面滑下(小車的速度與時間的關系);
c.一個彈簧由不掛重物到所掛重物的質量逐漸增加(彈簧的長度與所掛重物的質量的關系);
d.小明從A地到B地后,停留一段時間,然后按原來的速度原路返回(小明離A地的距離與時間的關系).
正確的順序是( )
A. abcd B. abdc C. acbd D. acdb
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點,交點分別是點B和點C,且拋物線的對稱軸為直線x=4.
(1)求出拋物線與x軸的兩個交點A,B的坐標.
(2)試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市經(jīng)濟技術開發(fā)區(qū)某智能手機有限公司接到生產(chǎn)300萬部智能手機的訂單,為了盡快交貨,增開了一條生產(chǎn)線,實際每月生產(chǎn)能力比原計劃提高了50%,結果比原計劃提前5個月完成交貨,求每月實際生產(chǎn)智能手機多少萬部.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四張完全相同的卡片上,分別畫有圓、正方形、等邊三角形和線段,現(xiàn)從中隨機抽取兩張,卡片上畫的恰好都是中心對稱圖形的概率為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BD,CD⊥BD,∠A與∠AEF互補,以下是證明CD∥EF的推理過程及理由,請你在橫線上補充適當條件,完整其推理過程或理由.
證明:∵AB⊥BD,CD⊥BD(已知)
∴∠ABD=∠CDB= ( 。
∴∠ABD+∠CDB=180°
∴AB∥ ( )
又∠A與∠AEF互補 ( 。
∠A+∠AEF=
∴AB∥ ( )
∴CD∥EF ( 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com