【題目】如圖,已知直線與拋物線 相交于和點兩點.

⑴求拋物線的函數(shù)表達式;

⑵若點是位于直線上方拋物線上的一動點,以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時,求此時四邊形的面積及點的坐標;

⑶在拋物線的對稱軸上是否存在定點,使拋物線上任意一點到點的距離等于到直線的距離,若存在,求出定點的坐標;若不存在,請說明理由.

【答案】;⑵當(dāng) □MANB== ,此時;⑶存在. 當(dāng)時,無論取任何實數(shù),均有. 理由見解析.

【解析】

1)利用待定系數(shù)法,將A,B的坐標代入y=ax2+2x+c即可求得二次函數(shù)的解析式;

2)過點MMHx軸于H,交直線ABK,求出直線AB的解析式,設(shè)點Ma-a2+2a+3),則Ka,a+1),利用函數(shù)思想求出MK的最大值,再求出AMB面積的最大值,可推出此時平行四邊形MANB的面積S及點M的坐標;

3)如圖2,分別過點B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對稱軸上存在點F,使拋物線C上任意一點P到點F的距離等于到直線y=的距離,其中F1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.

1)由題意把點(-1,0)、(2,3)代入y=ax2+2x+c

得,,

解得a=-1,c=3

∴此拋物線C函數(shù)表達式為:y=-x2+2x+3;

2)如圖1,過點MMHx軸于H,交直線ABK,

將點(-1,0)、(2,3)代入y=kx+b中,

得,,

解得,k=1,b=1

yAB=x+1,

設(shè)點Ma-a2+2a+3),則Ka,a+1),

MK=-a2+2a+3-a+1

=-a-2+,

根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時,MK有最大長度,

SAMB最大=SAMK+SBMK

=MKAH+MKxB-xH

=MKxB-xA

=××3

=,

∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時,

S最大=2SAMB最大=2×=,M,);

3)存在點F,

y=-x2+2x+3

=-x-12+4

∴對稱軸為直線x=1,

當(dāng)y=0時,x1=-1,x2=3

∴拋物線與點x軸正半軸交于點C3,0),

如圖2,分別過點BC作直線y=的垂線,垂足為N,H,

拋物線對稱軸上存在點F,使拋物線C上任意一點P到點F的距離等于到直線y=的距離,設(shè)F1a),連接BF,CF,

BF=BN=-3=,CF=CH=,

由題意可列:

解得,a=

F1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(不與端點重合),作,分別交、圓周于,連接,已知

1)求證:為⊙的切線;

2)已知,填空:

①當(dāng)__________時,四邊形是菱形;

②若,當(dāng)__________時,為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是4,點A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個數(shù)為

如果圖中的圓圈共有13層,請問:自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,34,……,則最底層最左邊這個圓圈中的數(shù)是__________;自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)﹣23,﹣22,﹣21,﹣20,……,則所有圓圈中各數(shù)的絕對值之和為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸,交直線于點,以為圓心,以長為半徑畫弧,交直線于點,過點軸,交直線于點,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸交直線于點,以點為圓心,以長為半徑面弧,交直線于點,…,按照如此規(guī)律進行下去,點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸是直線x=﹣2.拋物線與x軸的一個交點在點(﹣4,0)和點(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個數(shù)有( 。4ab0;②c3a;③關(guān)于x的方程ax2+bx+c2有兩個不相等實數(shù)根;④b2+2b4ac

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形中,點為對角線上一動點(點與點不重合),連接,作交射線于點,過點分別交于點、,作射線交射線于點

1)求證:;

2)當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量一條兩岸平行的河流寬度,三個數(shù)學(xué)研究小組設(shè)計了不同的方案,他們在河南岸的點A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:

課題

測量河流寬度

測量工具

測量角度的儀器,皮尺等

測量小組

第一小組

第二小組

第三小組

測量方案示意圖

說明

BC在點A的正東方向

B,D在點A的正東方向

B在點A的正東方向,點C在點A的正西方向.

測量數(shù)據(jù)

BC60m,

ABH70°,

ACH35°

BD20m

ABH70°,

BCD35°

BC101m

ABH70°,

ACH35°

1)哪個小組的數(shù)據(jù)無法計算出河寬?

2)請選擇其中一個方案及其數(shù)據(jù)求出河寬(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,sin35°≈0.57tan70°≈2.75,tan35°≈0.70

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個社團,隨機調(diào)查了部分學(xué)生.被調(diào)查學(xué)生每人都參加且只參加了其中一個社團活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計圖,在扇形統(tǒng)計圖中,“音樂”所對應(yīng)的扇形圓心角度數(shù)是( )度.

A.25%B.25C.60D.90

查看答案和解析>>

同步練習(xí)冊答案