【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸,交直線于點,以為圓心,以長為半徑畫弧,交直線于點,過點軸,交直線于點,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸交直線于點,以點為圓心,以長為半徑面弧,交直線于點,…,按照如此規(guī)律進行下去,點的坐標為__________

【答案】(,)

【解析】

根據(jù)題意可以求得點B1的坐標,點A2的坐標,點B2的坐標,然后即可發(fā)現(xiàn)坐標變化的規(guī)律,從而可以求得點B2020的坐標.

由題意可得,
A1的坐標為(1,2)
設點B1的坐標為(,),

OB1=OA1,

,

解得:,

∴點B1的坐標為(21),
同理可得,點A2的坐標為(24),點B2的坐標為(42),
A3的坐標為(4,8),點B3的坐標為(8,4),
……
∴點B2020的坐標為(,),

故答案為:(,)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】騎行是現(xiàn)在流行的健身方式之一,周末綠色騎行俱樂部組織了一次從甲地出發(fā),目的地為乙地的騎行活動,在俱樂部自行車隊出發(fā)1小時后,恰有一輛摩托車從甲地出發(fā),沿自行車隊行進路線前往乙地,到達乙地后立即按原路返回甲地.自行車隊與摩托車行駛速度均保持不變,并且摩托車行駛速度是自行車隊行駛速度的3倍.如圖所示的是自行車隊、摩托車離甲地的路程與自行車隊離開甲地的時間的關系圖象,請根據(jù)圖象提供的信息,回答下列問題.

1)摩托車行駛的速度是__________;____________

2)求出自行車隊離甲地的路程與自行車隊離開甲地的時間的關系式,并求出自行車隊出發(fā)多少小時與摩托車相遇;

3)直接寫出當摩托車與自行車隊相距時,此時離摩托車出發(fā)經(jīng)過了多少小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學生共有______人,條形統(tǒng)計圖中m的值為______;

2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數(shù)為______;

3)若該中學共有學生1800人,根據(jù)上述調(diào)查結果,可以估計出該學校學生中對校園安全知識達到非常了解基本了解程度的總人數(shù)為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)yk0)的圖象相交于點A,并與x軸交于點C,SAOC15.點D是線段AC上一點,CDAC23

1)求k的值;

2)根據(jù)圖象,直接寫出當x0時不等式>﹣x+5的解集;

3)求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線 相交于和點兩點.

⑴求拋物線的函數(shù)表達式;

⑵若點是位于直線上方拋物線上的一動點,以為相鄰兩邊作平行四邊形,當平行四邊形的面積最大時,求此時四邊形的面積及點的坐標;

⑶在拋物線的對稱軸上是否存在定點,使拋物線上任意一點到點的距離等于到直線的距離,若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的外接圓,,于點,延長于點,若,,則的長是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC2,BC8,按下列步驟作圖:

①以點A為圓心,適當?shù)拈L度為半徑作弧,分別交AB,AC于點EF,再分別以點EF為圓心,大于EF的長為半徑作弧相交于點H,作射線AH;

②分別以點A,B為圓心,大于AB的長為半徑作弧相交于點M,N,作直線MN,交射線AH于點O;

③以點O為圓心,線段OA長為半徑作圓.

則⊙O的半徑為( 。

A.2B.10C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示.某校計劃將一塊形狀為銳角三角形ABC的空地進行生態(tài)環(huán)境改造.已知△ABC的邊BC120米,高AD80米.學校計劃將它分割成△AHG、△BHE△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其余兩個頂點H、G分別在邊ABAC上.現(xiàn)計劃在△AHG上種草,每平方米投資6元;在△BHE、△FCG上都種花,每平方米投資10元;在矩形EFGH上興建愛心魚池,每平方米投資4元.

1)當FG長為多少米時,種草的面積與種花的面積相等?

2)當矩形EFGH的邊FG為多少米時,△ABC空地改造總投資最小,最小值為多少?

查看答案和解析>>

同步練習冊答案