【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個數(shù)為.
如果圖中的圓圈共有13層,請問:自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,……,則最底層最左邊這個圓圈中的數(shù)是__________;自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)﹣23,﹣22,﹣21,﹣20,……,則所有圓圈中各數(shù)的絕對值之和為__________.
【答案】79 2554
【解析】
13層時最底層最左邊這個圓圈中的數(shù)是第12層的最后一個數(shù)加1;首先計算圓圈的個數(shù),用23+數(shù)的個數(shù)減去1就是最底層最右邊圓圈內(nèi)的數(shù),再把所有數(shù)的絕對值相加即可.
解:當(dāng)有13層時,圖3中到第12層共有:1+2+3+…+11+12=78個圓圈,
最底層最左邊這個圓圈中的數(shù)是:78+1=79;
圖4中所有圓圈中共有個數(shù),
最底層最右邊圓圈內(nèi)的數(shù)是﹣23+91﹣1=67;
圖4中共有91個數(shù),其中23個負(fù)數(shù),1個0,67個正數(shù),
所以圖4中所有圓圈中各數(shù)的絕對值之和為:
|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+67
=(1+2+3+…+23)+(1+2+3+…+67)
=276+2278
=2554.
故答案為:(1)79;(2)2554.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長線上的一點(diǎn),∠EAB=∠ADB;
(1)求證:AE是⊙O的切線;
(2)已知點(diǎn)B是EF的中點(diǎn),求證:△EAF∽△CBA
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船向正東方向航行,在A處測得燈塔P在A的北偏東60°方向,航行40海里到達(dá)B處,此時測得燈塔P在B的北偏東15°方向.
(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號)
(2)當(dāng)輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達(dá)D處,求輪船每小時航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個數(shù)( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(1,0)作x軸的垂線與直線y=x相交于點(diǎn)B,以原點(diǎn)O為圓心、OA為半徑的圓與y軸相交于點(diǎn)C、D,拋物線y=x2+px+q經(jīng)過點(diǎn)B、C.
(1)求p、q的值;
(2)設(shè)拋物線的對稱軸與x軸相交于點(diǎn)E,連接CE并延長與⊙O相交于點(diǎn)F,求EF的長;
(3)記⊙O與x軸負(fù)半軸的交點(diǎn)為G,過點(diǎn)D作⊙O的切線與CG的延長線相交于點(diǎn)H.點(diǎn)H是否在拋物線上?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線: 相交于和點(diǎn)兩點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵若點(diǎn)是位于直線上方拋物線上的一動點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時,求此時四邊形的面積及點(diǎn)的坐標(biāo);
⑶在拋物線的對稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為.
(1)如圖①,當(dāng)時,求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)落在的延長線上時,求點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)落在線段上時,求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com