【題目】在△ABC中,∠ABC=120°,線段AC繞點C順時針旋轉(zhuǎn)60°得到線段CD,連接BD.
(1)如圖1,若AB=BC,求證:BD平分∠ABC;
(2)如圖2,若AB=2BC,
①求的值;
②連接AD,當S△ABC=時,直接寫出四邊形ABCD的面積為 .
【答案】(1)詳見解析;(2)① ;② .
【解析】
(1)連接AD,證△ACD是等邊三角形,再證△ABD≌△CBD,推出∠CBD=∠ABD,即得出結(jié)論;
(2)①連接AD,作等邊三角形ACD的外接圓⊙O,證點B在⊙O上,在BD上截取BM,使BM=BC,證△CBA≌△CMD,設(shè)BC=BM=1,則AB=MD=2,BD=3,過點C作CN⊥BD于N,可求出BN=BC=,CN=BC=,ND=BD﹣BN=,CD=,即可求出==;
②分別過點B,D作AC的垂線,垂足分別為H,Q,設(shè)CB=1,AB=2,CH=x,則由①知,AC=,AH=﹣x,在Rt△BCH與Rt△BAH中利用勾股定理求出BH的值,再求出DQ的值,求出=,因為AC為△ABC與△ACD的公共底,所以=,可求出△ACD的面積,進一步求出四邊形ABCD的面積.
(1)證明:如圖1,連接AD,
由題意知,∠ACD=60°,CA=CD,
∴△ACD是等邊三角形,
∴CD=AD,
又∵AB=CB,BD=BD,
∴△ABD≌△CBD(SSS),
∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)解:①如圖2,連接AD,作等邊三角形ACD的外接圓⊙O,
∵∠ADC=60°,∠ABC=120°,
∴∠ADC+∠ABC=180°,
∴點B在⊙O上,
∵AD=CD,
∴,
∴∠CBD=∠CAD=60°,
在BD上截取BM,使BM=BC,
則△BCM為等邊三角形,
∴∠CMB=60°,
∴∠CMD=120°=∠CBA,
又∵CB=CM,∠BAC=∠BDC,
∴△CBA≌△CMD(AAS),
∴MD=AB,
設(shè)BC=BM=1,則AB=MD=2,
∴BD=3,
過點C作CN⊥BD于N,
在Rt△BCN中,∠CBN=60°,
∴∠BCN=30°,
∴BN=BC=,CN=BC=,
∴ND=BD﹣BN=,
在Rt△CND中,
CD===,
∴AC=,
∴=;
②如圖3,分別過點B,D作AC的垂線,垂足分別為H,Q,
設(shè)CB=1,AB=2,CH=x,
則由①知,AC=,AH=-x,
在Rt△BCH與Rt△BAH中,
BC2﹣CH2=AB2﹣AH2,
即1﹣x2=22-(-x)2,
解得,x=,
∴BH==,
在Rt△ADQ中,DQ= AD=×=,
∴==,
∵AC為△ABC與△ACD的公共底,
∴==,
∵S△ABC=,
∴S△ACD=,
∴S四邊形ABCD==,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接與⊙O,AB=AC,AC⊥BD,垂足為E,點F在BD的延長線上,且DF=DC,連接AF、CF。
(1)若∠CAD=α,求∠BAC(用含α的代數(shù)式表示);
(2)求證:CF是⊙O的切線。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是中邊的中點,于,以為直徑的經(jīng)過,連接,有下列結(jié)論:①;②;③;④是的切線.其中正確的結(jié)論是( )
A.①②B.①②③C.②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形中,,,.平行四邊形的頂點在線段上(點在的左邊),頂點分別在線段和上.
(1)求證:;
(2)如圖1,將沿直線折疊得到,當恰好經(jīng)過點時,求證:四邊形是菱形;
(3)如圖2,若四邊形是矩形,且,求的長.(結(jié)果中的分母可保留根式)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AE為⊙O的直徑,D為的中點,過E點的切線交AD的延長線于F.
(1)求證:∠AEB=2∠F;
(2)若AD=2,DF=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為吸引市民組團去風景區(qū)旅游,觀光旅行社推出了如下收費標準:
某單位員工去風景區(qū)旅游,共支付給旅行社旅游費用10500元,請問該單位這次共有多少員工去風景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東53°方向,距離B地516千米,C地位于A地南偏東45°方向.現(xiàn)打算打通穿山隧道,建成兩地直達高鐵,求建成高鐵后從B地前往C地的路程.(結(jié)果精確到1千米)(參考數(shù)據(jù):sin53°=,cos53°=,tan53°=)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com