解:(1)△QCP是等邊三角形,
證明:連接OQ,則CQ⊥OQ,
∵PQ=PO,∠QPC=60°,
∴∠POQ=∠PQO=30°,
∴∠C=90°-30°=60°,
∴∠CQP=∠C=∠QPC=60°,
∴△QPC是等邊三角形.
(2)連接OQ,
∵∠PQO=∠POQ=45°,
∴∠CQP和∠C都是45°角的余角,
∴∠CQP=∠C=45°,△QCP是等腰直角三角形.
(3)∵PQ=PO,
∴∠PQO=∠POQ,
∴∠CQP=∠PCQ,
∴△CPQ是等腰三角形.
分析:(1)可根據(jù)切線的性質(zhì)來求解,連接OQ,那么OQ⊥CQ,可根據(jù)∠CPQ的度數(shù)得出∠PQO=∠POQ,那么∠CQP和∠C都是30°角的余角,因此它們的度數(shù)都是60°,由此可得出三角形CPQ是個等邊三角形.
(2)方法同(1),連接OQ后,∠PQO=∠POQ=45°,那么∠CQP和∠C都是45°角的余角,因此它們的度數(shù)都是45°,由此可得出三角形QCP是等腰直角三角形.
(3)不管P在AM上的任何位置,證法都同(1),由于PQ=PO,那么∠PQO=∠POQ,那么根據(jù)等角的余角相等,那么∠CQP=∠PCQ,因此三角形CPQ是等腰三角形.
點評:本題主要考查了切線的性質(zhì),等腰三角形,等邊三角形的判定等知識點,根據(jù)切線的性質(zhì)來求解是本題的基本思路.