【題目】如圖,在正方形ABCD中,連接AC,以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交AB、AC于點(diǎn)M,N,分別以M,N為圓心,大于MN長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)H,連結(jié)AH并延長(zhǎng)交BC于點(diǎn)E,再分別以A、E為圓心,以大于AE長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)P,Q,作直線PQ,分別交CD,AC,AB于點(diǎn)F,G,L,交CB的延長(zhǎng)線于點(diǎn)K,連接GE,下列結(jié)論:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
【答案】A
【解析】
①在△AOL和△BLK中,根據(jù)三角形內(nèi)角和定理,如圖兩個(gè)角對(duì)應(yīng)相等,則第三個(gè)角∠LKB=∠BAC=22.5°;
②根據(jù)線段中垂線定理證明∠AEG=∠EAG=22.5°=∠BAE,可得EG∥AB;
③根據(jù)等量代換可得:∠CGF=∠BLK,可作判斷;
④連接EL,證明四邊形ALEG是菱形,根據(jù)EL>BL,及相似三角形的性質(zhì)可作判斷.
①∵四邊形ABCD是正方形,
∴∠BAC=∠BAD=45°,
由作圖可知:AE平分∠BAC,
∴∠BAE=∠CAE=22.5°,
∵PQ是AE的中垂線,
∴AE⊥PQ,
∴∠AOL=90°,
∵∠AOL=∠LBK=90°,∠ALO=∠KLB,
∴∠LKB=∠BAE=22.5°;
故①正確;
②∵OG是AE的中垂線,
∴AG=EG,
∴∠AEG=∠EAG=22.5°=∠BAE,
∴EG∥AB,
故②正確;
③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,
∴∠ALO=∠AGO,
∵∠CGF=∠AGO,∠BLK=∠ALO,
∴∠CGF=∠BLK,
在Rt△BKL中,tan∠CGF=tan∠BLK=,
故③正確;
④連接EL,
∵AL=AG=EG,EG∥AB,
∴四邊形ALEG是菱形,
∴AL=EL=EG>BL,
∴,
∵EG∥AB,
∴△CEG∽△CBA,
∴,
故④不正確;
本題正確的是:①②③,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊的邊長(zhǎng)為,是邊上的動(dòng)點(diǎn),交邊于點(diǎn),在邊上取一點(diǎn),使,連接.
(1)請(qǐng)直接寫(xiě)出圖中與線段相等的兩條線段;(不再另外添加輔助線)
(2)探究:當(dāng)點(diǎn)在什么位置時(shí),四邊形是平行四邊形?并判斷四邊形是什么特殊的平行四邊形,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,以點(diǎn)為圓心,為半徑作圓,根據(jù)與平行四邊形四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種貨車(chē)共8輛,其中每輛車(chē)的價(jià)格以及每輛車(chē)的運(yùn)載量如下表:
A型 | B型 | |
價(jià)格(萬(wàn)元/臺(tái)) | m | n |
運(yùn)載量(噸/車(chē)) | 20 | 30 |
若購(gòu)買(mǎi)A型貨車(chē)1輛,B型貨車(chē)3輛,共需67萬(wàn)元;若購(gòu)買(mǎi)A型貨車(chē)3輛,B型貨車(chē)2輛,共需75萬(wàn)元.
(1)求m,n的值;
(2)若每輛A型貨車(chē)每月運(yùn)載量500噸,每輛B型貨車(chē)每月運(yùn)載量750噸,為確保這8輛車(chē)每月的運(yùn)載量總和不少于4750噸,且該公司購(gòu)買(mǎi)A型和B型貨車(chē)的總費(fèi)用不超過(guò)124萬(wàn)元.請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車(chē)總費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)一電瓶小客車(chē)接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).
(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.
(2)若電瓶車(chē)充足一次電能行走15千米,則該電瓶車(chē)能否在一開(kāi)始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】背景閱讀:
意大利著名數(shù)學(xué)家裴波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.為了紀(jì)念這個(gè)著名的發(fā)現(xiàn),人們將這組數(shù)命名為裴波那契數(shù)列.
實(shí)踐操作:
(1)寫(xiě)出裴波那契數(shù)列的前10個(gè)數(shù);
(2)裴波那契數(shù)列的前2017個(gè)數(shù)中,有多少個(gè)奇數(shù)?
(3)現(xiàn)以這組數(shù)的各個(gè)數(shù)作為正方形的邊長(zhǎng)構(gòu)造如圖1的正方形系列:再分別從左到右取2個(gè)、3個(gè)、4個(gè)、5個(gè)正方形拼成如下矩形記為①、②、③、④、⑤……
(i)通過(guò)計(jì)算相對(duì)應(yīng)長(zhǎng)方形的周長(zhǎng)填寫(xiě)表(不計(jì)拼出的長(zhǎng)方形內(nèi)部的線段)
序號(hào) | ① | ② | ③ | ④ | ⑤ | …… |
周長(zhǎng) | 6 | 10 | …… |
(ii)若按此規(guī)律繼續(xù)拼成長(zhǎng)方形,求序號(hào)為⑩的長(zhǎng)方形的面積和周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,BD、CE分別是AC、AB上的高,BD與CE交于點(diǎn)O.BD=CE
(1)問(wèn)△ABC為等腰三角形嗎?為什么?
(2)問(wèn)點(diǎn)O在∠A的平分線上嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),P在Q的左側(cè),且滿足OP=OQ,OP⊥OQ,則點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com