【題目】如圖,點PQ是直線y=﹣上的兩點,PQ的左側(cè),且滿足OPOQOPOQ,則點P的坐標是_____

【答案】

【解析】

證明△PMO≌△ONQAAS),則PMON,OMQN,設(shè)點Pm,﹣m+2),則點Q(﹣m+2,﹣m),即可求解.

解:分別過點P、Qx軸的垂線交于點M、N,

OPOQ

∴∠POM+QON90°,而∠QON+OQN90°,

∴∠OQN=∠MOP,OPOQ,∠PMO=∠ONQ90°,

∴△PMO≌△ONQAAS),

PMON,OMQN,

設(shè)點Pm,﹣m+2),則點Q(﹣m+2,﹣m),

將點Q的坐標代入y=﹣得:﹣m=﹣(﹣m+2+2,

解得:m=﹣,

故點P(﹣,),

故答案為:(﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接AC,以點A為圓心,適當長為半徑畫弧,交AB、AC于點M,N,分別以M,N為圓心,大于MN長的一半為半徑畫弧,兩弧交于點H,連結(jié)AH并延長交BC于點E,再分別以A、E為圓心,以大于AE長的一半為半徑畫弧,兩弧交于點P,Q,作直線PQ,分別交CD,AC,AB于點F,G,L,交CB的延長線于點K,連接GE,下列結(jié)論:①∠LKB=22.5°,GEAB,tanCGF=,SCGE:SCAB=1:4.其中正確的是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD、EF相交于點O

1)寫出∠COE的鄰補角;

2)分別寫出∠COE和∠BOE的對頂角;

3)如果∠BOD=60°,,求∠DOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載著這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長分別為5里;12里;13里,問這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )

A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC0.7米,梯子頂端到地面的距離AC2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離AD1.5米,求小巷有多寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題:在首屆“一帶一路”國際合作高峰論壇舉辦之后,某公司準備生產(chǎn)甲、乙兩種商品銷往“一帶一路”沿線國家和地區(qū),原計劃生產(chǎn)甲商品和乙商品共210噸,采用新技術(shù)后,實際產(chǎn)量為230噸,其中甲商品超產(chǎn)5%,乙商品超產(chǎn)15%,求該公司實際生產(chǎn)甲、乙兩種商品各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達B地,停留1小時后,速度不變,按原路返回.設(shè)兩車行駛的時間是x小時,離開A地的距離是y千米,如圖是yx的函數(shù)圖象.

1)甲車的速度是  ,乙車的速度是  

2)甲車在返程途中,兩車相距20千米時,求乙車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形中,,直線過點

1)當時,如圖①,分別過點于點,于點.求證:

2)當時,如圖②,點與點關(guān)于直線對稱,連接、,動點從點出發(fā),以每秒1個單位長度的速度沿邊向終點運動,同時動點從點出發(fā),以每秒3個單位的速度沿向終點運動,點、到達相應(yīng)的終點時停止運動,過點于點,過點于點,設(shè)運動時間為秒.

①用含的代數(shù)式表示

②直接寫出當全等時的值.

查看答案和解析>>

同步練習(xí)冊答案