【題目】如圖1,已知點,,且、滿足,的邊與軸交于點,且為中點,雙曲線經(jīng)過、兩點.
(1)求的值;
(2)點在雙曲線上,點在軸上,若以點、、、為頂點的四邊形是平行四邊形,試求滿足要求的所有點、的坐標;
(3)以線段為對角線作正方形(如圖,點是邊上一動點,是的中點,,交于,當在上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.
【答案】(1);(2),;,;,;(3)的值不發(fā)生改變.
【解析】
(1)先根據(jù)非負數(shù)的性質(zhì)求出、的值,故可得出、兩點的坐標,設,由,可知,再根據(jù)反比例函數(shù)的性質(zhì)求出的值即可;
(2)由(1)知可知反比例函數(shù)的解析式為,再由點在雙曲線上,點在軸上,設,,再分以為邊和以為對角線兩種情況求出的值,故可得出、的坐標;
(3)連、、,易證,故,,由此即可得出結(jié)論.
(1),
,
解得:,
,,
為中點,
,
設,
又,
,
,
,
;
(2)由(1)知,
反比例函數(shù)的解析式為,
點在雙曲線上,點在軸上,
設,,
①當為邊時:
如圖1,若為平行四邊形,
則,
解得,
此時,;
如圖2,若為平行四邊形,
則,
解得,
此時,;
②如圖3,當為對角線時,
,且;
,
解得,
,;
故,;,;,;
(3)的值不發(fā)生改變,
理由:如圖4,連、、,
是線段的垂直平分線,
,
四邊形是正方形,
,
在與中,,
,
,
,
四邊形中,,而,
所以,,所以,四邊形內(nèi)角和為,
所以.
,
.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. “明天降雨的概率是50%”表示明天有半天都在降雨
B. 數(shù)據(jù)4,3,5,5,0的中位數(shù)和眾數(shù)都是5
C. 要了解一批鋼化玻璃的最少允許碎片數(shù),應采用普查的方式
D. 若甲、乙兩組數(shù)中各有20個數(shù)據(jù),平均數(shù)=10,方差s2甲=1.25,s2乙=0.96,則說明乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某隧道洞的內(nèi)部截面頂部是拋物線形,現(xiàn)測得地面寬 AB=10m,隧道頂點O到地面AB的距離為5m,
(1)建立適當?shù)钠矫嬷苯亲鴺讼,幵求該拋物線的解析式;
(2)一輛小轎車長 4.5米,寬2米,高1.5米,同樣大小的小轎車通過該隧道,最多能有 幾輛車幵行?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知動點P在邊長為1的正方形ABCD的內(nèi)部,點P到邊AD、AB的距離分別為m、n.
(1)以A為原點,以邊AB所在直線為x軸,建立平面直角坐標系,如圖①所示,當點P在對角線AC上,且m=時,求點P的坐標;
(2)如圖②,當m、n滿足什么條件時,點P在△DAB的內(nèi)部?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示方式放置,點A1,A2,A3,…和點C1,C2,C3,…分別在直線和x軸上,則點B2019的橫坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系xOy中,點A(x1,y1)、B(x2,y2)是某函數(shù)圖象上任意兩點(x1<x2),將函數(shù)圖象中x<x1的部分沿直線y=y1作軸對稱,x>x2的部分沿直線y=y2作軸對稱,與原函數(shù)圖象中x1≤x≤x2的部分組成了一個新函數(shù)的圖象,稱這個新函數(shù)為原函數(shù)關(guān)于點A、B的“雙對稱函數(shù)”.例如:如圖①,點A(﹣2,﹣1)、B(1,2)是一次函數(shù)y=x+1圖象上的兩個點,則函數(shù)y=x+1關(guān)于點A、B的“雙對稱函數(shù)”的圖象如圖②所示.
(1)點A(t,y1)、B(t+3,y2)是函數(shù)y=圖象上的兩點,y=關(guān)于點A、B的“雙對稱函數(shù)”的圖象記作G,若G是中心對稱圖形,直接寫出t的值.
(2)點P(,y1),Q(+t,y2)是二次函數(shù)y=(x﹣t)2+2t圖象上的兩點,該二次函數(shù)關(guān)于點P、Q的“雙對稱函數(shù)”記作f.
①求P、Q兩點的坐標(用含t的代數(shù)式表示).
②當t=﹣2時,求出函數(shù)f的解析式;
③若﹣1≤x≤1時,函數(shù)f的最小值為ymin,求﹣2≤ymin≤﹣1時,t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF的頂點都在格點上,請解答下列問題:
(1) 畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的圖形△A1B1C1,A、B、C的對應點分別是A1、B1、C1
(2) 設(1)中的線段A A1與線段B B1的長分別為a和b,則___________
(3) △A1B1C1與△DEF關(guān)于某點對稱,請直接寫出它們對稱中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點P為△ABC內(nèi)一點,∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com