【題目】如圖,已知平行四邊形ABCD,點(diǎn)M,N分別在邊AD和邊BC上,點(diǎn)E,F在線段BD上,且AM=CN,DF=BE.求證:
(1)∠DFM=∠BEN;
(2)四邊形MENF是平行四邊形.
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、證明過(guò)程見(jiàn)解析
【解析】試題分析:(1)由平行四邊形的性質(zhì)得到得AD∥BC,AD=BC,∠ADF=∠CBE,然后根據(jù)AM=CN得到DM=BN,從而證得△DMF≌△BNE,理由全等三角形對(duì)應(yīng)角相等證得結(jié)論;(2)利用一組對(duì)邊平行且相等的四邊形為平行四邊形進(jìn)行判定即可.
試題解析:(1)由平行四邊形ABCD得AD∥BC,AD=BC,∠ADF=∠CBE
∵AM=CN,
∴AD﹣AM=BC﹣CN,
即DM=BN,
又∵DF=BE,
∴△DMF≌△BNE,
∴∠DFM=∠BEN;
(2)由△DMF≌△BNE得NE=MF,
∵∠DFM=∠BEN得∠FEN=∠MFE,
∴MF∥NE,
∴四邊形NEMF是平行四邊形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.
(1)如圖1,當(dāng)△ABC是等邊三角形時(shí),請(qǐng)你寫出滿足圖中條件,四個(gè)成立的結(jié)論;
(2)如圖2,當(dāng)△ABC中只有∠ACB=60°時(shí),請(qǐng)你證明S△ABC與S△ABD的和等于S△BCE與S△ACF的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下面系列圖形中第一個(gè)最小的等腰直角三角形的面積都是 1,后一個(gè)等腰直角三 角形的斜邊恰好是前一個(gè)等腰直角三角形的直角邊的 2 倍,請(qǐng)計(jì)算每個(gè)圖形的面積,并填在 相應(yīng)的空中,
圖形 1 面積=_____,圖形 2 面積=_____,圖形 3 的面積=_____,
…………
圖形 4 的面積=_____, 圖形 n 的面積=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從A向D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度.已知A(1,1)、B(3,4)和C(4,2).
(1)在圖中標(biāo)出點(diǎn)A、B、C.
(2)將點(diǎn)C向下平移3個(gè)單位到D點(diǎn),將點(diǎn)A先向左平移3個(gè)單位,再向下平移1個(gè)單位到E點(diǎn),在圖中標(biāo)出D點(diǎn)和E點(diǎn).
(3)求△EBD的面積S△EBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖a.圖b均為邊長(zhǎng)等于1的正方形組成的網(wǎng)格.
(1)在圖a空白的方格中,畫出陰影部分的圖形沿虛線AB翻折后的圖形,并算出原來(lái)陰影部分的面積.(直接寫出答案)
(2)在圖b空白的方格中,畫出陰影部分的圖形向右平移2個(gè)單位,再向上平移1個(gè)單位后的圖形,并判斷原來(lái)陰影部分的圖形是什么三角形?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次期中考試中,
(1)一個(gè)班級(jí)有甲、乙、丙三名學(xué)生,分別得到70分、80分、90分.這三名同學(xué)的平均得分是多少?
(2)一個(gè)班級(jí)共有40名學(xué)生,其中5人得到70分,20人得到80分,15人得到90分.求班級(jí)的平均得分.
(3)一個(gè)班級(jí)中,20%的學(xué)生得到70分,50%的學(xué)生得到80分,30%的學(xué)生得到90分.求班級(jí)的平均得分.
(4)中考的各學(xué)科的分值依次為:數(shù)學(xué)150分,語(yǔ)文150分,物理100分,政治50分,歷史50分,合計(jì)總分為500分. 在這次期中考試中,各門學(xué)科的總分都設(shè)置為100分,現(xiàn)已知甲、乙兩名學(xué)生的得分如下表:
學(xué)科 | 數(shù)學(xué) | 語(yǔ)文 | 物理 | 政治 | 歷史 |
甲 | 80 | 90 | 80 | 80 | 70 |
乙 | 80 | 80 | 70 | 80 | 95 |
你認(rèn)為哪名同學(xué)的成績(jī)更理想,寫出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=4,BC=5,點(diǎn)E在邊CD上,以B為坐標(biāo)原點(diǎn),BA所在直線為y軸,BC所在直線為x軸,建立平面直角坐標(biāo)系,A(0,4).以AE所在直線為折痕折疊長(zhǎng)方形ABCD,點(diǎn)D恰好落在BC邊上的F點(diǎn).
(1)求點(diǎn)F的坐標(biāo);
(2)求點(diǎn)E的坐標(biāo);
(3)在AE上是否存在點(diǎn)P,使PB+PF最?若存在,作出點(diǎn)P的位置,并求出PB+PF的最小值;不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com