【題目】如圖1,把圓形井蓋卡在角尺角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個交點對應CD的長為40cm則可知井蓋的直徑是(

A. 25cm B. 30cm C. 50cm D. 60cm

【答案】C

【解析】

設井蓋的直徑為2xcm,BE=10cm,BO=(x10cm,BC=20cm,CO=xcm.在RtBCO,根據(jù)勾股定理得CO2=BC2+BO2,然后代入即可解出x的值求出井蓋的直徑

OOBOAB,交⊙O于點E連接OC如下所示

設井蓋的直徑為2xcm,BE=10cmBO=(x10cm,BC=20cmCO=xcm.在RtBCO,根據(jù)勾股定理得CO2=BC2+BO2,代入得x2=202+x102解得x=25,則井蓋的直徑是50cm

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點DBC邊上一動點(與點B,C不重合),點E與點D關于直線AC對稱,連結AE,過點BBFED的延長線于點F.

(1)依題意補全圖形;

(2)當AE=BD時,用等式表示線段DEBF之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,翻折,使點落在斜邊上某一點處,折痕為(點、分別在邊、上)

時,若相似(如圖),求的長;

當點的中點時(如圖),相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側作等邊三角形ACD和等邊三角形BCE,連接AEBD交于點P

(觀察猜想)

AEBD的數(shù)量關系是   ;

②∠APD的度數(shù)為   

(數(shù)學思考)

如圖2,當點C在線段AB外時,(1)中的結論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明;

(拓展應用)

如圖3,點E為四邊形ABCD內(nèi)一點,且滿足∠AED=∠BEC90°AEDE,BECE,對角線AC、BD交于點P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨機擲兩枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù),則這兩枚骰子向上的一面點數(shù)都是奇數(shù)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級有600名學生,在體育中考前進行了一次模擬體測.從中隨機抽取部分學生,根據(jù)其測試成績制作了下面兩個統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:

(Ⅰ)本次抽取到的學生人數(shù)為 ,圖2的值為 ;

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校九年級模擬體測中得12分的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在長方形OABC的邊OA上,連接BP,過點PBP的垂線,交射線OC于點Q,在點P從點A出發(fā)沿AO方向運動到點O的過程中,設AP=x,OQ=y,則下列說法正確的是(

A.yx的增大而增大B.yx的增大而減小

C.x的增大,y先增大后減小D.x的增大,y先減小后增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,AC=15,AB=25,點D為斜邊AB上動點.

1)如圖1,當CDAB時,求CD的長度;

2)如圖2,當AD=AC時,過點DDEABBC于點E,求CE的長度;

3)如圖3,在點D的運動過程中,連接CD,當ACD為等腰三角形時,直接寫出AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了調(diào)查學生對教學的滿意度,隨機抽取了部分學生作問卷調(diào)查:用“A”表示很滿意,“B”表示滿意“C”表示比較滿意,“D”表示不滿意,如圖甲、乙是工作人員根據(jù)問卷調(diào)查統(tǒng)計資料繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:

1)本次問卷調(diào)查,共調(diào)查了多少名學生?

2)將圖甲中“B”部分的圖形補充完整;

3)如果該校有學生1000人,請你估計該校學生對教學感到不滿意的約有多少人?

查看答案和解析>>

同步練習冊答案